Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Biol Eng ; 17(1): 24, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997993

ABSTRACT

BACKGROUND: Monoclonal antibodies are essential in life science research and developing antibody drugs and test drugs. Various methods have been developed to obtain monoclonal antibodies, among which hybridoma technology continues to be widely used. However, developing a rapid and efficient method for obtaining conformation-specific antibodies using hybridoma technology remains challenging. We previously developed the membrane-type immunoglobulin-directed hybridoma screening (MIHS) method, which is a flow cytometry-based screening technique based on the interaction between the B-cell receptor expressed on the hybridoma cell surface and the antigen protein, to obtain conformation-specific antibodies. RESULTS: In this study, we proposed a streptavidin-anchored ELISA screening technology (SAST) as a secondary screening method that retains the advantages of the MIHS method. Anti-enhanced green fluorescent protein monoclonal antibodies were generated as a model experiment, and their structural recognition abilities were examined. Examination of the reaction profiles showed that all monoclonal antibodies obtained in this study recognize the conformational epitopes of the protein antigen. Furthermore, these monoclonal antibodies were classified into two groups: those with binding activities against partially denatured proteins and those with complete loss of binding activities. Next, when screening monoclonal antibodies by the MIHS method as the first screening, we found that monoclonal antibodies with stronger binding constants may be selected by double-staining for hybridomas with fluorescently labeled target antigens and fluorescently labeled B cell receptor antibodies. CONCLUSIONS: The proposed two-step screening method, which incorporates MIHS and SAST, constitutes a rapid, simple, and effective strategy to obtain conformation-specific monoclonal antibodies generated through hybridoma technology. The novel monoclonal antibody screening strategy reported herein could accelerate the development of antibody drugs and antibody tests.

2.
Biosci Biotechnol Biochem ; 67(6): 1335-41, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12843662

ABSTRACT

The four peptides interacting with H7 flagellin of Escherichia coli were selected from a phage display library. The library was selected four times, and the interacting phage peptides were competitively eluted with H7 flagellin. An enzyme-linked immunosorbent assay (ELISA) showed that these peptides were reactive with the H7 flagellin in a dose-dependent manner. Among them, a D1 phage clone showed the highest binding affinity to the H7 flagellin. We synthesized the D1 peptide (LHIHRPTLSIQG) corresponding to the peptide-encoding region of the D1 phage clone. The synthetic peptide showed micro-molar affinity (EC(50) value=1.9 microM) for the H7 flagellin. Furthermore, this D1 peptide interacted more specifically with the H7 flagellin than with the other flagellins (H1, H5, H12, or H23) of E. coli. In situ hybridization clearly showed that the peptide only detected those cells harboring the H7 flagellin gene (fliC). The peptide may specifically bind to the H7 flagellin on the cell surface. These results suggest that the phage-display technique could be used as a tool for identifying peptides as an alternative to using a ligand as a diagnostic reagent in food products or in clinical testing.


Subject(s)
Escherichia coli Proteins/metabolism , Flagellin/metabolism , Peptide Library , Peptides/metabolism , Amino Acid Sequence , Bacterial Typing Techniques/methods , Bacteriophages , Enzyme-Linked Immunosorbent Assay , Escherichia coli O157/chemistry , Escherichia coli O157/isolation & purification , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL