Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Oral Dis ; 27(5): 1226-1237, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32881188

ABSTRACT

OBJECTIVES: Although tooth transplantation is a useful treatment option as a substitute for a missing tooth, transplantation to a narrow alveolar ridge is not feasible. In this study, we tested a tissue engineering approach simultaneously with tooth transplantation using a scaffold or a combination with cells to accelerate bone formation and periodontal tissue regeneration. MATERIALS AND METHODS: Bone marrow mononuclear cells (BM-MNCs) were harvested from C57BL/6J mice. The upper first or the second molar of 3-week-old C57BL/6J mice and a ß-tricalcium phosphate (ß-TCP) scaffold were transplanted with BM-MNCs (MNC group) or without BM-MNCs (ß-TCP group) into the thigh muscle of syngeneic mice. The tooth alone was also transplanted (control group). After 4 weeks, the transplants were harvested and analyzed. RESULTS: Bone volume was significantly larger in the MNC and the ß-TCP groups than that in the control group, and the newly formed bone was observed on the lateral wall of the root. Compared with the control group, the MNC group showed a larger trabecular thickness and fractal dimension. CONCLUSION: This study showed accelerated bone formation and periodontal tissue regeneration when tooth transplantation was performed with a ß-TCP scaffold. BM-MNCs may accelerate bone maturation, while the effect on bone formation was limited.


Subject(s)
Bone Regeneration , Osteogenesis , Animals , Calcium Phosphates , Mice , Mice, Inbred C57BL , Tissue Scaffolds
2.
Tissue Eng Regen Med ; 19(2): 377-387, 2022 04.
Article in English | MEDLINE | ID: mdl-35119647

ABSTRACT

BACKGROUND: Although tooth transplantation is a desirable treatment option for congenital defects of permanent teeth in children, transplantation to a narrow alveolar ridge is not feasible. In this study, we investigated the possibility of bone tissue engineering simultaneously with tooth transplantation to enhance the width of the alveolar bone. METHODS: Bone marrow mononuclear cells or cortical bone-derived mesenchymal stromal cell spheroids were seeded onto atelocollagen sponge and transplanted with freshly extracted molars from mice of the same strain. New bone formation around the tooth root was evaluated using micro-computed tomography and histological analysis. Tooth alone, or tooth with scaffold but without cells, was also transplanted and served as controls. RESULTS: Micro-computed tomography showed new bone formation in the furcation area in all four groups. Remarkable bone formation outside the root was also observed in the cortical bone-derived mesenchymal stromal cell group, but was scarce in the other three groups. Histological analysis revealed that the space between the new bone and the root was filled with collagen fibers in all four groups, indicating that the periodontal ligament was maintained. CONCLUSION: This study demonstrates the potential of simultaneous alveolar bone expansion employing bone tissue engineering approach using cortical bone-derived mesenchymal stromal cell spheroids for tooth transplantation. The use of an orthotopic transplantation model may further clarify the feasibility and functional recovery of the transplanted tooth over a longer period.


Subject(s)
Osteogenesis , Tissue Engineering , Animals , Cortical Bone , Mice , Periodontal Ligament/pathology , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL