Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
FASEB J ; 33(11): 13002-13013, 2019 11.
Article in English | MEDLINE | ID: mdl-31525300

ABSTRACT

African trypanosomiasis, sleeping sickness in humans or nagana in animals, is a potentially fatal neglected tropical disease and a threat to 65 million human lives and 100 million small and large livestock animals in sub-Saharan Africa. Available treatments for this devastating disease are few and have limited efficacy, prompting the search for new drug candidates. Simultaneous inhibition of the trypanosomal glycerol kinase (TGK) and trypanosomal alternative oxidase (TAO) is considered a validated strategy toward the development of new drugs. Our goal is to develop a TGK-specific inhibitor for coadministration with ascofuranone (AF), the most potent TAO inhibitor. Here, we report on the identification of novel compounds with inhibitory potency against TGK. Importantly, one of these compounds (compound 17) and its derivatives (17a and 17b) killed trypanosomes even in the absence of AF. Inhibition kinetics revealed that derivative 17b is a mixed-type and competitive inhibitor for TGK and TAO, respectively. Structural data revealed the molecular basis of this dual inhibitory action, which, in our opinion, will aid in the successful development of a promising drug to treat trypanosomiasis. Although the EC50 of compound 17b against trypanosome cells was 1.77 µM, it had no effect on cultured human cells, even at 50 µM.-Balogun, E. O., Inaoka, D. K., Shiba, T., Tsuge, C., May, B., Sato, T., Kido, Y., Nara, T., Aoki, T., Honma, T., Tanaka, A., Inoue, M., Matsuoka, S., Michels, P. A. M., Watanabe, Y.-I., Moore, A. L., Harada, S., Kita, K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei.


Subject(s)
Coumarins/pharmacology , Drug Discovery , Glycerol Kinase/antagonists & inhibitors , Mitochondrial Proteins/antagonists & inhibitors , Oxidoreductases/antagonists & inhibitors , Plant Proteins/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , Coumarins/chemistry , Glycerol Kinase/metabolism , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Trypanosoma brucei brucei/enzymology
2.
Proc Natl Acad Sci U S A ; 113(46): 13039-13044, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799539

ABSTRACT

The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/chemistry , Crystallization , Crystallography/methods , Detergents/chemistry , Electrons , Halobacterium , Lasers , Protein Conformation , Triiodobenzoic Acids/chemistry
3.
Biochim Biophys Acta ; 1858(9): 2106-2115, 2016 09.
Article in English | MEDLINE | ID: mdl-27301269

ABSTRACT

Reconstituted membranes with diverse diacylphospholipids were prepared by using bacteriorhodopsin (bR) in which the intrinsic lipid content was decreased to 24% of the original while the trimeric structure and photocycle of bR were retained. Four phospholipids with a different headgroup, phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylserine (PS), were adopted for reconstitution. By varying the lipid-protein ratios, the interactions of these phospholipids with bR, as a boundary lipid, were evaluated by solid state (2)H/(31)P NMR, circular dichroism (CD), and laser-flash photolysis. The (31)P NMR results revealed that the headgroup of acidic phosphatidylglycerol (PG) interacts more strongly with bR than that of phosphatidylcholine (PC). CD analysis indicated that the trimetric structure of bR was retained in all the phospholipid-bR preparations at low and medium lipid contents. Acidic lipids PA, PG and PS restored the photocycle activity of bR to an extent comparable to (or slightly lower than) that of the purple membrane while PC caused a marked reduction of the bR photocycle efficiency. Among PGs with different fatty acyl groups, those with mono- and di-unsaturated lipids tended to preserve the photocycle efficiency, whereas the fully saturated lipid did not. These results show that acidic unsaturated phospholipids, particularly dioleoylphosphatidylglycerol (DOPG), have higher affinity for bR and efficiently restore its trimetric structure. The present study suggests that bR reconstituted in DOPG bilayers may possibly be used as a model system for spectroscopic investigations of the lipid-bR interactions with the membrane-integral α-helices, and potentially for a similar type of membrane proteins.


Subject(s)
Bacteriorhodopsins/chemistry , Halobacterium salinarum/chemistry , Lipid Bilayers/chemistry , Phosphatidylglycerols/chemistry , Circular Dichroism , Nuclear Magnetic Resonance, Biomolecular , Photolysis
4.
Proc Natl Acad Sci U S A ; 110(12): 4580-5, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23487766

ABSTRACT

In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction.


Subject(s)
Cyanides/chemistry , Drug Resistance , Mitochondrial Proteins/chemistry , Oxidoreductases/chemistry , Plant Proteins/chemistry , Protozoan Proteins/chemistry , Trypanosoma brucei brucei/enzymology , Catalytic Domain , Crystallography, X-Ray , Humans , Oxidation-Reduction , Oxygen/chemistry , Protein Structure, Secondary
5.
Mol Microbiol ; 94(6): 1315-29, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25315291

ABSTRACT

The glycerol kinase (GK) of African human trypanosomes is compartmentalized in their glycosomes. Unlike the host GK, which under physiological conditions catalyzes only the forward reaction (ATP-dependent glycerol phosphorylation), trypanosome GK can additionally catalyze the reverse reaction. In fact, owing to this unique reverse catalysis, GK is potentially essential for the parasites survival in the human host, hence a promising drug target. The mechanism of its reverse catalysis was unknown; therefore, it was not clear if this ability was purely due to its localization in the organelles or whether structure-based catalytic differences also contribute. To investigate this lack of information, the X-ray crystal structure of this protein was determined up to 1.90 Å resolution, in its unligated form and in complex with three natural ligands. These data, in conjunction with results from structure-guided mutagenesis suggests that the trypanosome GK is possibly a transiently autophosphorylating threonine kinase, with the catalytic site formed by non-conserved residues. Our results provide a series of structural peculiarities of this enzyme, and gives unexpected insight into the reverse catalysis mechanism. Together, they provide an encouraging molecular framework for the development of trypanosome GK-specific inhibitors, which may lead to the design of new and safer trypanocidal drug(s).


Subject(s)
Glycerol Kinase/chemistry , Glycerol Kinase/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Trypanosoma brucei gambiense/enzymology , Adenosine Diphosphate/metabolism , Catalytic Domain , Crystallography, X-Ray , Glycerol , Glycerol Kinase/genetics , Humans , Models, Molecular , Mutagenesis , Protein Binding , Protein Structure, Secondary , Protozoan Proteins/genetics , Trypanosoma brucei gambiense/chemistry , Trypanosomiasis, African/parasitology
6.
Chem Rec ; 15(4): 675-90, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26123293

ABSTRACT

Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology.


Subject(s)
Membrane Lipids/chemistry , Membrane Lipids/metabolism , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Animals , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular
7.
Bioorg Med Chem Lett ; 25(2): 203-6, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25510375

ABSTRACT

Lipid organization has been at the center of research on lipid rafts. Dioleoylphosphatidylcholine (DOPC) is a typical unsaturated lipid. Very few studies have reported its thermodynamics in raft-like membranes. Herein, we have developed a highly efficient synthetic method for [C6-(2)H2] oleic acid, and newly synthesized [C6-(2)H2] DOPC. In raft-like oriented bilayers, [C6-(2)H2] DOPC shows clear phase separation and characteristic phase behavior at various temperature. It has been successfully utilized for the comparison of membrane properties between sphingomyelin (SM) and dihydrosphingomyelin (DHSM) membranes.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Membrane Microdomains/chemistry , Oleic Acid/chemistry , Phosphatidylcholines/chemistry , Oleic Acid/analysis , Phosphatidylcholines/analysis
8.
Org Biomol Chem ; 13(42): 10578, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26442463

ABSTRACT

Correction for 'Stereoselective synthesis of the head group of archaeal phospholipid PGP-Me to investigate bacteriorhodopsin-lipid interactions' by Jin Cui, et al., Org. Biomol. Chem., 2015, DOI: 10.1039/c5ob01252j.

9.
Org Biomol Chem ; 13(41): 10279-84, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26412567

ABSTRACT

Phosphatidylglycerophosphate methyl ester (PGP-Me), a major constituent of the archaeal purple membrane, is essential for the proper proton-pump activity of bacteriorhodopsin (bR). We carried out the first synthesis of the bisphosphate head group of PGP-Me using H-phosphonate chemistry that led to the production of a simplified PGP-Me analogue with straight alkyl chains. To investigate the role of this head group in the structural and functional integrity of bR, the analogue was used to reconstitute bR into liposomes, in which bR retained the original trimeric structure and light-induced photocycle activity. Enhanced ordering of an alkyl chain of the (2)H-labelled analogue was observed in (2)H NMR spectra upon interaction with bR. These results together suggest that the bisphosphate moiety plays a role in the proper functioning of bR through the lipid-protein interaction.


Subject(s)
Bacteriorhodopsins/chemistry , Phospholipids/chemistry , Phospholipids/chemical synthesis , Molecular Conformation , Stereoisomerism
10.
Bioorg Med Chem ; 23(13): 2989-94, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26026768

ABSTRACT

Three Raman probes of sphingomyelin (SM) were synthesized and evaluated for their applicability to imaging experiments. One probe containing a hydroxymethyl-1,3-butadiyne moiety in the polar head group showed strong scattering. The solid-state (2)H NMR spectra of this probe in oriented bilayer membrane revealed excellent compatibility with natural SM in phase behavior since the probe undergoes phase separation to form raft-like liquid ordered (Lo) domains in the raft-mimicking mixed bilayers.


Subject(s)
Alkynes/chemistry , Lipid Bilayers/chemistry , Molecular Probes/chemistry , Phosphatidylcholines/chemistry , Sphingomyelins/chemistry , Animals , Cattle , Magnetic Resonance Spectroscopy , Membrane Microdomains/chemistry , Molecular Mimicry , Phase Transition
11.
Magn Reson Chem ; 53(7): 514-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26017552

ABSTRACT

Structural diversity and molecular flexibility of phospholipids are essential for biological membranes to play key roles in numerous cellular processes. Uncovering the behavior of individual lipids in membrane dynamics is crucial for understanding the molecular mechanisms underlying biological functions of cell membranes. In this paper, we introduce a simple method to investigate dynamics of lipid molecules in multi-component systems by measuring the (31) P chemical shift anisotropy (CSA) under magic angle spinning (MAS) conditions. For achieving both signal separation and CSA determination, we utilized a centerband-only analysis of rotor-unsynchronized spin echo (COARSE). This analysis is based on the curve fitting of periodic modulation of centerband intensity along the interpulse delay time in rotor-unsynchronized spin-echo experiments. The utility of COARSE was examined by using phospholipid vesicles, a three-component lipid raft model system, and archaeal purple membranes. We found that the apparent advantages of this method are high resolution and high sensitivity given by the moderate MAS speed and the one-dimensional acquisition with short spin-echo delays. COARSE provides an alternative method for CSA measurement that is effective in the investigation of lipid polymorphologies.


Subject(s)
Phospholipids/analysis , Phosphorus/chemistry , Anisotropy , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy/standards , Molecular Structure , Reference Standards
12.
Int J Mol Sci ; 16(7): 15287-308, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26198225

ABSTRACT

Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 µM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 µM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.


Subject(s)
Anilides/chemistry , Anilides/pharmacology , Fumarates/metabolism , Mitochondria/metabolism , Models, Molecular , Parasites/metabolism , Animals , Ascaris suum/drug effects , Ascaris suum/enzymology , Benzoquinones/metabolism , Binding Sites , Cell Respiration/drug effects , Electron Transport Complex II/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Mitochondria/drug effects , Oxidoreductases/metabolism , Parasites/drug effects , Parasites/enzymology , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Substrate Specificity/drug effects , Succinic Acid/metabolism , Sus scrofa
13.
Angew Chem Int Ed Engl ; 54(5): 1508-11, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25491543

ABSTRACT

Long-chain fatty acids (FAs) with low water solubility require fatty-acid-binding proteins (FABPs) to transport them from cytoplasm to the mitochondria for energy production. However, the precise mechanism by which these proteins recognize the various lengths of simple alkyl chains of FAs with similar high affinity remains unknown. To address this question, we employed a newly developed calorimetric method for comprehensively evaluating the affinity of FAs, sub-Angstrom X-ray crystallography to accurately determine their 3D structure, and energy calculations of the coexisting water molecules using the computer program WaterMap. Our results clearly showed that the heart-type FABP (FABP3) preferentially incorporates a U-shaped FA of C10-C18 using a lipid-compatible water cluster, and excludes longer FAs using a chain-length-limiting water cluster. These mechanisms could help us gain a general understanding of how proteins recognize diverse lipids with different chain lengths.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Myocardium/metabolism , Water/metabolism , Binding Sites , Calorimetry , Crystallography, X-Ray , Fatty Acid Binding Protein 3 , Fatty Acid-Binding Proteins/chemistry , Fatty Acids/chemistry , Fatty Acids/metabolism , Humans , Molecular Dynamics Simulation , Protein Structure, Tertiary , Thermodynamics , Water/chemistry
14.
Bioorg Med Chem ; 22(6): 1804-8, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24581547

ABSTRACT

The role of heart-type fatty acid-binding protein (FABP3) in human physiology as an intracellular carrier of fatty acids (FAs) has been well-documented. In this study, we aimed to develop an analytical method to study real-time interaction kinetics between FABP3 immobilized on the sensor surface and unsaturated C18 FAs using surface plasmon resonance (SPR). To establish the conditions for SPR experiments, we used an FABP3-selective inhibitor 4-(2-(1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl)-phenoxy)-butyric acid. The affinity index thus obtained was comparable to that reported previously, further supporting the usefulness of the SPR-based approach for evaluating interactions between FABPs and hydrophobic ligands. A pseudo-first-order affinity of FABP3 to K(+) petroselinate (C18:1 Δ6 cis), K(+) elaidate (C18:1 Δ9 trans), and K(+) oleate (C18:1 Δ9 cis) was characterized by the dissociation constant (K(d)) near micromolar ranges, whereas K(+) linoleate (C18:2 Δ9,12 cis/cis) and K(+) α-linolenate (C18:3 Δ9,12,15 cis/cis/cis) showed a higher affinity to FABP3 with Kd around 1 × 10(-6)M. Interactions between FAPB3 and C18 FAs incorporated in large unilamellar vesicles consisting of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and FAs (5:1 molar ratio) were also analysed. Control DMPC liposomes without FA showed only marginal binding to FABP3 immobilized on a sensor chip while liposome-incorporated FA revealed significant responses in sensorgrams, demonstrating that the affinity of FAs to FABP3 could be evaluated by using the liposome-incorporated analytes. Significant affinity to FABP3 was observed for monounsaturated fatty acids (K(d) in the range of 1 × 10(-7)M). These experiments demonstrated that highly hydrophobic compounds in a liposome-incorporated form could be subjected to SPR experiments for kinetic analysis.


Subject(s)
Fatty Acid-Binding Proteins/chemistry , Fatty Acids, Unsaturated/chemistry , Liposomes/chemistry , Surface Plasmon Resonance , Fatty Acid Binding Protein 3 , Fatty Acid-Binding Proteins/genetics , Humans , Kinetics , Liposomes/chemical synthesis
15.
Biophys Chem ; 308: 107204, 2024 May.
Article in English | MEDLINE | ID: mdl-38412762

ABSTRACT

Boundary lipids surrounding membrane proteins play an essential role in protein function and structure. These protein-lipid interactions are mainly divided into electrostatic interactions between the polar amino acids of proteins and polar heads of phospholipids, and hydrophobic interactions between protein transmembrane sites and phospholipid acyl chains. Our previous report (Kawatake et al., Biochim. Biophys. Acta 1858 [2016] 2106-2115) covered a method for selectively analyzing boundary lipid interactions and showed differences in membrane protein-peripheral lipid interactions due to differences in their head group. Interactions in the hydrophobic acyl chains of phospholipids are relatively consistent among proteins, but the details of these interactions have not been elucidated. In this study, we reconstituted bacteriorhodopsin as a model protein into phospholipid membranes labeled with 2H and 13C for solid-state NMR measurement to investigate the depth-dependent effect of the head group structure on the lipid bilayer. The results showed that the position of the phospholipid near the carbonyl carbon was affected by the head group in terms of selectivity for protein surfaces, whereas in the deep interior of the bilayer near the leaflet interface, there was little difference between the head groups, indicating that the dependence of their interactions on the head group was much reduced.


Subject(s)
Bacteriorhodopsins , Phospholipids , Phospholipids/chemistry , Bacteriorhodopsins/chemistry , Lipid Bilayers/chemistry , Membrane Lipids/metabolism , Magnetic Resonance Spectroscopy
16.
J Synchrotron Radiat ; 20(Pt 6): 923-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24121341

ABSTRACT

Heart-type fatty-acid-binding protein (FABP3), which is a cytosolic protein abundantly found in cardiomyocytes, plays a role in trafficking fatty acids throughout cellular compartments by reversibly binding intracellular fatty acids with relatively high affinity. The fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) is extensively utilized for examining the interaction of ligands with fatty-acid-binding proteins. The X-ray structure of FABP3 was determined in the presence of ANS and revealed the detailed ANS-binding mechanism. Furthermore, four water molecules were clearly identified in the binding cavity. Through these water molecules, the bound ANS molecule forms indirect hydrogen-bond interactions with FABP3. The adipocyte-type fatty-acid-binding protein (FABP4) exhibits 67% sequence identity with FABP3 and its crystal structure is almost the same as that of FABP3. However, FABP4 can bind with a higher affinity to ANS than FABP3. To understand the difference in their ligand specificities, a structural comparison was performed between FABP3-ANS and FABP4-ANS complexes. The result revealed that the orientation of ANS binding to FABP3 is completely opposite to that of ANS binding to FABP4, and the substitution of valine in FABP4 to leucine in FABP3 may result in greater steric hindrance between the side-chain of Leu115 and the aniline ring of ANS.


Subject(s)
Anilino Naphthalenesulfonates/chemistry , Fatty Acid-Binding Proteins/chemistry , Fluorescent Dyes/chemistry , Fatty Acid Binding Protein 3 , Humans , Protein Conformation
17.
Biophys Chem ; 294: 106959, 2023 03.
Article in English | MEDLINE | ID: mdl-36709544

ABSTRACT

Bacteriorhodopsin (bR), a transmembrane protein with seven α-helices, is highly expressed in the purple membrane (PM) of archaea such as Halobacterium salinarum. It is well known that bR forms two-dimensional crystals with acidic lipids such as phosphatidylglycerol phosphate methyl ester (PGP-Me)-a major component of PM lipids bearing unique chemical structures-methyl-branched alkyl chains, ether linkages, and divalent anionic head groups with two phosphodiester groups. Therefore, we aimed to determine which functional groups of PGP-Me are essential for the boundary lipids of bR and how these functionalities interact with bR. To this end, we compared various well-known phospholipids (PLs) that carry one of the structural features of PGP-Me, and evaluated the affinity of PLs to bR using the centerband-only analysis of rotor-unsynchronized spin echo (COARSE) method in solid-state NMR measurements and thermal shift assays. The results clearly showed that the branched methyl groups of alkyl chains and double negative charges in the head groups are important for PL interactions with bR. We then examined the effect of phospholipids on the monomer-trimer exchange of bR using circular dichroism (CD) spectra. The results indicated that the divalent negative charge in a head group stabilizes the trimer structure, while the branched methyl chains significantly enhance the PLs' affinity for bR, thus dispersing bR trimers in the PM even at high concentrations. Finally, we investigated the effects of PL on the proton-pumping activity of bR based on the decay rate constant of the M intermediate of a bR photocycle. The findings showed that bR activities decreased to 20% in 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), and in 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers as compared to that in PM. Meanwhile, 1,2-Diphytanoyl-sn-glycero-3-phosphate (DPhPA) bilayers bearing both negative charges and branched methyl groups preserved over 80% of the activity. These results strongly suggest that the head groups and alkyl chains of phospholipids are essential for boundary lipids and greatly influence the biological function of bR.


Subject(s)
Bacteriorhodopsins , Bacteriorhodopsins/chemistry , Bacteriorhodopsins/metabolism , Phospholipids/chemistry , Membrane Lipids/chemistry , Halobacterium salinarum/chemistry , Halobacterium salinarum/metabolism , Phosphates/metabolism
18.
J Am Chem Soc ; 134(34): 14011-8, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22861006

ABSTRACT

We report herein the design, total synthesis, and functional analysis of a novel artificial ion channel molecule, designated as dansylated polytheonamide mimic (3). The channel 3 was designed based on an exceptionally potent cytotoxin, polytheonamide B (1). Our strategy for the development of synthetic ion channels, which could be easily derivatized for various functions, involved two key features. First, the structure of 1 was simplified by replacing many of nonproteinogenic amino acid residues which required multistep synthesis by commercially available amino acids while retaining those residues necessary for folding. It significantly reduced the number of synthetic steps and facilitated a practical chemical construction of 3. Second, the introduction of propargyl glycine at residue 44 enabled facile installation of dansyl group as a reporter of the membrane localization of 3. Application of a newly designed protective group strategy provided efficient construction of the 37 amino acid sequence of residues 12-48 through one automatic solid-phase peptide synthesis. After peptide cleavage from the resin, 3 was synthesized via dansyl group introduction and one fragment-coupling reaction with residues 1-11, followed by the global deprotection. The simplified mimic 3 exhibited potent cytotoxicity toward p388 mouse leukemia cells (IC(50) = 12 nM), effectively induced ion transport across the lipid bilayers of liposomes, and displayed H(+) and Na(+) ion channel activities. Because of its simplified yet functional scaffold structure with a potential for diversification, our rationally designed ion channel molecule should be useful as a novel platform for developing various cytotoxic channel molecules with additional desired functions.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ion Channels/chemistry , Ion Channels/pharmacology , Proteins/chemistry , Proteins/pharmacology , Theonella/chemistry , Amino Acid Sequence , Animals , Antineoplastic Agents/chemical synthesis , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Intracellular Signaling Peptides and Proteins , Ion Channels/chemical synthesis , Ion Transport/drug effects , Leukemia/drug therapy , Mice , Models, Molecular , Molecular Sequence Data , Proteins/chemical synthesis , Solid-Phase Synthesis Techniques
19.
Org Biomol Chem ; 10(30): 5787-90, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22407523

ABSTRACT

Thioflavin-T is one of the most important amyloid specific dyes and has been used for more than 50 years; however, the molecular mechanism of staining is still not understood. Chemically synthesized short polyglutamine peptides (Q(n), n = 5-10) were subjected to the thioflavin-T (ThT) staining assay. It was found that the minimum Q(n) peptide that stained positive to ThT was Q(6). Two types of ThT-binding sites, a high-affinity site (k(d1) = 0.1-0.17 µM) and a low-affinity site (k(d2) = 5.7-7.4 µM), were observed in short polyQs (n = 6-9). (13)C{(2)H}REDOR NMR experiments were carried out to extract the local structure of ThT binding sites in Q(8) peptide aggregates by observing the intermolecular dipolar coupling between [3-Me-d(3)]ThT and natural abundance Q(8) or residue-specific [1,2-(13)C(2)] labeled Q(8)s. (13)C{(2)H}REDOR difference spectra of the [3-Me-d(3)]ThT/natural abundance Q(8) (1/9) complex indicated that all of the five carbons of the glutamine residue participated in the formation of ThT-binding sites. (13)C{(2)H}DQF-REDOR experiments of [3-Me-d(3)]ThT/residue-specific [1,2-(13)C(2)] labeled Q(8) (1/50) complexes demonstrated that the N-terminal glutamine residue had direct contact with the ThT molecule at the high-affinity ThT-binding sites.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Thiazoles/metabolism , Amino Acid Motifs , Benzothiazoles , Binding Sites , Models, Molecular , Protein Multimerization
20.
Chem Phys Lipids ; 247: 105227, 2022 09.
Article in English | MEDLINE | ID: mdl-35932927

ABSTRACT

The interaction of proteins with hydrophobic ligands in biological membranes is an important research topic in the life sciences. The hydrophobic nature of ligands, especially their lack of water solubility, often makes it difficult to experimentally investigate their interactions with proteins, thus hampering quantitative evaluation based on thermodynamic parameters. The fatty acid-binding proteins, particularly FABP3, discussed in this review can recognize fatty acids, a primary component of membrane lipids, with high affinity. The precise three-dimensional structure of fatty acids and related ligands bound in FABP3 and their interaction with the binding pocket will contribute to the understanding of accurately determining physicochemical factors that cause the expression of affinity between protein surfaces and lipids in biological membranes. During the research of FABP3, we encountered many of the problems that were widely implicated in experiments dealing with hydrophobic ligands. To address these issues, we developed experimental methodologies using X-ray crystallography, calorimetry, and surface plasmon resonance. Using these methods and computational approaches, we have obtained several insights into the interaction of hydrophobic ligands with protein binding sites. Structural and functional studies of FABP potentially lead to a better understanding of the interaction between lipids and proteins, and thus, this protein may provide one of the model systems for investigating substance transport across cell membranes and inner membrane systems.


Subject(s)
Fatty Acid-Binding Proteins , Fatty Acids , Ligands , Membrane Proteins , Protein Binding , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL