ABSTRACT
Recombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.
Subject(s)
4-1BB Ligand/genetics , Cell- and Tissue-Based Therapy , Erythrocytes/metabolism , Gene Expression , Genetic Therapy , Interleukin-15/genetics , 4-1BB Ligand/metabolism , Animals , Cell- and Tissue-Based Therapy/methods , Erythroid Precursor Cells/metabolism , Female , Flow Cytometry , Genes, Reporter , Genetic Engineering , Genetic Therapy/methods , Humans , Interleukin-15/metabolism , Mice , Models, Animal , Protein Binding , Treatment Outcome , Xenograft Model Antitumor AssaysABSTRACT
CD48 (SLAMF2) is an adhesion and costimulatory molecule constitutively expressed on hematopoietic cells. Polymorphisms in CD48 have been linked to susceptibility to multiple sclerosis (MS), and altered expression of the structurally related protein CD58 (LFA-3) is associated with disease remission in MS. We examined CD48 expression and function in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We found that a subpopulation of CD4+ T cells highly upregulated CD48 expression during EAE and were enriched for pathogenic CD4+ T cells. These CD48++CD4+ T cells were predominantly CD44+ and Ki67+, included producers of IL-17A, GM-CSF, and IFN-ĆĀ³, and were most of the CD4+ T cells in the CNS. Administration of anti-CD48 mAb during EAE attenuated clinical disease, limited accumulation of lymphocytes in the CNS, and reduced the number of pathogenic cytokine-secreting CD4+ T cells in the spleen at early time points. These therapeutic effects required CD48 expression on CD4+ T cells but not on APCs. Additionally, the effects of anti-CD48 were partially dependent on FcĆĀ³Rs, as anti-CD48 did not ameliorate EAE or reduce the number of cytokine-producing effector CD4+ T cells in FcĆĀµr1ĆĀ³-/- mice or in wild-type mice receiving anti-CD16/CD32 mAb. Our data suggest that anti-CD48 mAb exerts its therapeutic effects by both limiting CD4+ T cell proliferation and preferentially eliminating pathogenic CD48++CD4+ T cells during EAE. Our findings indicate that high CD48 expression is a feature of pathogenic CD4+ T cells during EAE and point to CD48 as a potential target for immunotherapy.
Subject(s)
Antibodies, Monoclonal/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD48 Antigen/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Hematopoietic Stem Cells/physiology , Immunotherapy/methods , Multiple Sclerosis/therapy , Animals , CD4-Positive T-Lymphocytes/immunology , CD48 Antigen/genetics , Cell Proliferation , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Genetic Predisposition to Disease , Humans , Lymphocyte Count , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Polymorphism, GeneticABSTRACT
CD48, a member of the signaling lymphocyte activation molecule family, participates in adhesion and activation of immune cells. Although constitutively expressed on most hematopoietic cells, CD48 is upregulated on subsets of activated cells. CD48 can have activating roles on T cells, antigen presenting cells and granulocytes, by binding to CD2 or bacterial FimH, and through cell intrinsic effects. Interactions between CD48 and its high affinity ligand CD244 are more complex, with both stimulatory and inhibitory outcomes. CD244:CD48 interactions regulate target cell lysis by NK cells and CTLs, which are important for viral clearance and regulation of effector/memory T cell generation and survival. Here we review roles of CD48 in infection, tolerance, autoimmunity, and allergy, as well as the tools used to investigate this receptor. We discuss stimulatory and regulatory roles for CD48, its potential as a therapeutic target in human disease, and current challenges to investigation of this immunoregulatory receptor.
Subject(s)
Antigens, CD/immunology , Animals , Autoimmunity , CD48 Antigen , CD58 Antigens/immunology , Humans , Immune Tolerance , LigandsABSTRACT
Several genes within a syntenic region of human and mouse chromosome 1 are associated with predisposition to systemic lupus erythematosus. Analyses of lupus-prone congenic mice have pointed to an important role for the signaling lymphocyte activation molecule family (slamf)6 surface receptor in lupus pathogenesis. In this article, we demonstrate that a second member of the Slamf gene family, Slamf4 (Cd244), contributes to lupus-related autoimmunity. B6.Slamf4(-/-) mice spontaneously develop activated CD4 T cells and B cells and increased numbers of T follicular helper cells and a proportion develop autoantibodies to nuclear Ags. B6.Slamf4(-/-) mice also exhibit markedly increased autoantibody production in the B6.C-H-2bm12/KhEg Ć¢ĀĀ B6 transfer model of lupus. Although slamf4 function is best characterized in NK cells, the enhanced humoral autoimmunity of B6.Slamf4(-/-) mice is NK cell independent, as judged by depletion studies. Taken together, our findings reveal that slamf4 has an NK cell-independent negative regulatory role in the pathogenesis of lupus a normally non-autoimmune prone genetic background.
Subject(s)
Antigens, CD/physiology , Autoantibodies/biosynthesis , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Receptors, Immunologic/physiology , Animals , Antigens, CD/genetics , Chromatin/immunology , Chronic Disease , Disease Models, Animal , Genetic Predisposition to Disease , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Humans , Immune Tolerance/genetics , Lupus Erythematosus, Systemic/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Signaling Lymphocytic Activation Molecule FamilyABSTRACT
Germ cell tumors are a heterogeneous group of neoplasms derived from residual primordial tissue. These tumors are commonly found in the brain, testes, or ovaries, where they are termed germinomas, seminomas, or dysgerminomas, respectively. Like several other tumor types, germ cell tumors often harbor an immune cell infiltrate that can include substantial numbers of B cells. Yet little is known about whether the humoral immune response affects germ cell tumor biology. To gain a deeper understanding of the role B cells play in this tumor family, we characterized the immune cell infiltrate of all three germ cell tumor subtypes and defined the molecular characteristics of the B cell Ag receptor expressed by tumor-associated B cells. Immunohistochemistry revealed a prominent B cell infiltrate in the microenvironment of all tumors examined and clear evidence of extranodal lymphoid follicles with germinal center-like architecture in a subset of specimens. Molecular characterization of the Ig variable region from 320 sequences expressed by germ cell tumor-infiltrating B cells revealed clear evidence of Ag experience, in that the cardinal features of an Ag-driven B cell response were present: significant somatic mutation, isotype switching, and codon insertion/deletion. This characterization also revealed the presence of both B cell clonal expansion and variation, suggesting that local B cell maturation most likely occurs within the tumor microenvironment. In contrast, sequences from control tissues and peripheral blood displayed none of these characteristics. Collectively, these data strongly suggest that an adaptive and specific humoral immune response is occurring within the tumor microenvironment.
Subject(s)
Antibodies, Neoplasm/biosynthesis , Antigens, Neoplasm/immunology , Neoplasms, Germ Cell and Embryonal/immunology , Neoplasms, Germ Cell and Embryonal/metabolism , Antibodies, Neoplasm/genetics , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/pathology , Cell Movement/immunology , Clone Cells , Dysgerminoma/immunology , Dysgerminoma/metabolism , Dysgerminoma/pathology , Germinoma/immunology , Germinoma/metabolism , Germinoma/pathology , Humans , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/biosynthesis , Immunoglobulin Variable Region/genetics , Medulloblastoma/immunology , Medulloblastoma/metabolism , Medulloblastoma/pathology , Molecular Sequence Data , Neoplasms, Germ Cell and Embryonal/pathology , Seminoma/immunology , Seminoma/metabolism , Seminoma/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathologyABSTRACT
Multiple sclerosis (MS) typically manifests in early to mid adulthood, but there is increasing recognition of pediatric-onset MS, aided by improvements in imaging techniques. The immunological mechanisms of disease are largely unexplored in pediatric-onset MS, in part because studies have historically focused on adult-onset disease. We investigated autoantibodies to myelin surface Ags in a large cohort of pediatric MS cases by flow cytometric labeling of transfectants that expressed different myelin proteins. Although Abs to native myelin oligodendrocyte glycoprotein (MOG) were uncommon among adult-onset patients, a subset of pediatric patients had serum Abs that brightly labeled the MOG transfectant. Abs to two other myelin surface Ags were largely absent. Affinity purification of MOG Abs as well as competition of binding with soluble MOG documented their binding specificity. Such affinity purified Abs labeled myelin and glial cells in human CNS white matter as well as myelinated axons in gray matter. The prevalence of such autoantibodies was highest among patients with a very early onset of MS: 38.7% of patients less than 10 years of age at disease onset had MOG Abs, compared with 14.7% of patients in the 10- to 18-year age group. B cell autoimmunity to this myelin surface Ag is therefore most common in patients with a very early onset of MS.
Subject(s)
Autoimmunity/immunology , B-Lymphocytes/immunology , Multiple Sclerosis/immunology , Myelin Proteins/immunology , Myelin-Associated Glycoprotein/immunology , Adolescent , Adult , Age Distribution , Age Factors , Age of Onset , Aged , Autoantibodies/analysis , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Myelin Proteins/analysis , Myelin Proteins/isolation & purification , Myelin Sheath/chemistry , Myelin-Associated Glycoprotein/isolation & purification , Myelin-Associated Glycoprotein/metabolism , Myelin-Oligodendrocyte Glycoprotein , Neuroglia/chemistry , Young AdultABSTRACT
Inhibitory signals through the PD-1 pathway regulate T cell activation, T cell tolerance, and T cell exhaustion. Studies of PD-1 function have focused primarily on effector T cells. Far less is known about PD-1 function in regulatory T (T reg) cells. To study the role of PD-1 in T reg cells, we generated mice that selectively lack PD-1 in T reg cells. PD-1-deficient T reg cells exhibit an activated phenotype and enhanced immunosuppressive function. The in vivo significance of the potent suppressive capacity of PD-1-deficient T reg cells is illustrated by ameliorated experimental autoimmune encephalomyelitis (EAE) and protection from diabetes in nonobese diabetic (NOD) mice lacking PD-1 selectively in T reg cells. We identified reduced signaling through the PI3K-AKT pathway as a mechanism underlying the enhanced suppressive capacity of PD-1-deficient T reg cells. Our findings demonstrate that cell-intrinsic PD-1 restraint of T reg cells is a significant mechanism by which PD-1 inhibitory signals regulate T cell tolerance and autoimmunity.
Subject(s)
Diabetes Mellitus, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immune Tolerance , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Diabetes Mellitus, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Mice , Mice, Inbred NOD , Mice, Neurologic Mutants , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Programmed Cell Death 1 Receptor/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction/geneticsABSTRACT
The inflammatory myopathies are putative autoimmune disorders characterized by muscle weakness and the presence of intramuscular inflammatory infiltrates. Although inclusion body myositis and polymyositis have been characterized as cytotoxic CD8(+) T cell-mediated diseases, we recently demonstrated high frequencies of CD138(+) plasma cells in the inflamed muscle tissue of patients with these diseases. To gain a deeper understanding of the role these B cell family members play in the disease pathology, we examined the molecular characteristics of the H chain portion of the Ag receptor. Biopsies of muscle tissue were sectioned and tissue regions and individual cells were isolated through laser capture microdissection. Ig H chain gene transcripts isolated from the sections, regions, and cells were used to determine the variable region gene sequences. Analysis of these sequences revealed clear evidence of affinity maturation in that significant somatic mutation, isotype switching, receptor revision, codon insertion/deletion, and oligoclonal expansion had occurred within the B and plasma cell populations. Moreover, analysis of tissue regions isolated by laser capture microdissection revealed both clonal expansion and variation, suggesting that local B cell maturation occurs within muscle. In contrast, sequences from control muscle tissues and peripheral blood revealed none of these characteristics found in inflammatory myopathy muscle tissue. Collectively, these data demonstrate that Ag drives a B cell Ag-specific response in muscle in patients with dermatomyositis, inclusion body myositis, and polymyositis. These findings highlight the need for a revision of the current paradigm of exclusively T cell-mediated intramuscular Ag-specific autoimmunity in inclusion body myositis and polymyositis.