Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
J Immunol ; 213(1): 75-85, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38758115

ABSTRACT

In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Subject(s)
Elastin , Neutrophils , Protein-Arginine Deiminase Type 2 , Protein-Arginine Deiminase Type 4 , Proteolysis , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Neutrophils/immunology , Elastin/metabolism , Female , Male , Protein-Arginine Deiminase Type 4/metabolism , Middle Aged , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology , Pulmonary Emphysema/immunology , Aged , Protein-Arginine Deiminase Type 2/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Citrullination , Protein-Arginine Deiminases/metabolism , Leukocyte Elastase/metabolism , Lung/immunology , Lung/pathology
2.
Article in English | MEDLINE | ID: mdl-38820234

ABSTRACT

Pulmonary fibrosis (PF) can be idiopathic or driven by a specific insult or disease process. Inflammation plays a role in the pathophysiology, the extent of which remains a longstanding topic of debate. More recently there has been increasing interest in a potential inciting role for aberrant lipid metabolism. Lipids are essential for the structure and function of all cell membranes but specifically in the lung for surfactant composition, intra and intercellular lipid mediators and lipofibroblasts. Clinically, there is evidence of increased lipid deposition in the subpleural space, and at a whole lung tissue level in PF. There is evidence of increased parenchymal lipid deposition and abnormal mediastinal fat shape on chest CT. A protective role for cholesterol lowering drugs including statins and ezetimibe has been described in PF. At a cellular level, fatty acid (FA), phospholipid (PL) and glucose metabolism are disordered, as is the production of lipid mediators. In this perspectives piece we put forward the argument that there is substantive clinical and biological evidence to support a role for aberrant lipid metabolism and lipid mediators in the pathogenesis of PF.

3.
J Lipid Res ; 65(2): 100496, 2024 02.
Article in English | MEDLINE | ID: mdl-38185217

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients.


Subject(s)
Pulmonary Alveolar Proteinosis , Animals , Mice , Humans , Pulmonary Alveolar Proteinosis/drug therapy , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/metabolism , Macrophages, Alveolar , Lung/metabolism , Macrophages/metabolism , Lipids
4.
Semin Respir Crit Care Med ; 45(3): 397-410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621712

ABSTRACT

Sjögren's disease (SjD) is a chronic, progressive autoimmune condition of exocrine and extraglandular tissues. It can present with isolated disease characterized by lymphocytic infiltration of salivary or lacrimal glands, but in approximately one-third of the patients, lymphocytic infiltration extends beyond exocrine glands to involve extraglandular organs such as the lungs. Pulmonary complications have been reported to occur between 9 and 27% of patients with SjD across studies. Respiratory manifestations occur on a spectrum of severity and include airways disease, interstitial lung disease, cystic lung disease, and lymphoma. Lung involvement can greatly affect patients' quality of life, has a major impact on the overall prognosis, and frequently leads to alteration in the treatment plans, highlighting the importance of maintaining a high index of clinical suspicion and taking appropriate steps to facilitate early recognition and intervention.


Subject(s)
Lung Diseases , Sjogren's Syndrome , Humans , Sjogren's Syndrome/complications , Sjogren's Syndrome/physiopathology , Lung Diseases/etiology , Quality of Life , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/physiopathology , Prognosis
5.
Am J Respir Crit Care Med ; 207(9): 1194-1202, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36602845

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is a rare, irreversible, and progressive disease of the lungs. Common genetic variants, in addition to nongenetic factors, have been consistently associated with IPF. Rare variants identified by candidate gene, family-based, and exome studies have also been reported to associate with IPF. However, the extent to which rare variants, genome-wide, may contribute to the risk of IPF remains unknown. Objectives: We used whole-genome sequencing to investigate the role of rare variants, genome-wide, on IPF risk. Methods: As part of the Trans-Omics for Precision Medicine Program, we sequenced 2,180 cases of IPF. Association testing focused on the aggregated effect of rare variants (minor allele frequency ⩽0.01) within genes or regions. We also identified individual rare variants that are influential within genes and estimated the heritability of IPF on the basis of rare and common variants. Measurements and Main Results: Rare variants in both TERT and RTEL1 were significantly associated with IPF. A single rare variant in each of the TERT and RTEL1 genes was found to consistently influence the aggregated test statistics. There was no significant evidence of association with other previously reported rare variants. The SNP heritability of IPF was estimated to be 32% (SE = 3%). Conclusions: Rare variants within the TERT and RTEL1 genes and well-established common variants have the largest contribution to IPF risk overall. Efforts in risk profiling or the development of therapies for IPF that focus on TERT, RTEL1, common variants, and environmental risk factors are likely to have the largest impact on this complex disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Whole Genome Sequencing , Exome
6.
Respirology ; 28(11): 1043-1052, 2023 11.
Article in English | MEDLINE | ID: mdl-37642207

ABSTRACT

BACKGROUND AND OBJECTIVE: There is increasing interest in the role of lipids in processes that modulate lung fibrosis with evidence of lipid deposition in idiopathic pulmonary fibrosis (IPF) histological specimens. The aim of this study was to identify measurable markers of pulmonary lipid that may have utility as IPF biomarkers. STUDY DESIGN AND METHODS: IPF and control lung biopsy specimens were analysed using a unbiased lipidomic approach. Pulmonary fat attenuation volume (PFAV) was assessed on chest CT images (CTPFAV ) with 3D semi-automated lung density software. Aerated lung was semi-automatically segmented and CTPFAV calculated using a Hounsfield-unit (-40 to -200HU) threshold range expressed as a percentage of total lung volume. CTPFAV was compared to pulmonary function, serum lipids and qualitative CT fibrosis scores. RESULTS: There was a significant increase in total lipid content on histological analysis of IPF lung tissue (23.16 nmol/mg) compared to controls (18.66 mol/mg, p = 0.0317). The median CTPFAV in IPF was higher than controls (1.34% vs. 0.72%, p < 0.001) and CTPFAV correlated significantly with DLCO% predicted (R2 = 0.356, p < 0.0001) and FVC% predicted (R2 = 0.407, p < 0.0001) in patients with IPF. CTPFAV correlated with CT features of fibrosis; higher CTPFAV was associated with >10% reticulation (1.6% vs. 0.94%, p = 0.0017) and >10% honeycombing (1.87% vs. 1.12%, p = 0.0003). CTPFAV showed no correlation with serum lipids. CONCLUSION: CTPFAV is an easily quantifiable non-invasive measure of pulmonary lipids. In this pilot study, CTPFAV correlates with pulmonary function and radiological features of IPF and could function as a potential biomarker for IPF disease severity assessment.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lipidomics , Humans , Pilot Projects , Lung , Tomography, X-Ray Computed/methods , Biomarkers , Lipids , Fibrosis , Retrospective Studies
7.
Am J Respir Crit Care Med ; 205(9): 1016-1035, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35227171

ABSTRACT

Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease characterized by myeloid cell dysfunction, abnormal pulmonary surfactant accumulation, and innate immune deficiency. It has a prevalence of 7-10 per million; occurs in individuals of all races, geographic regions, sex, and socioeconomic status; and accounts for 90% of all patients with PAP syndrome. The most common presentation is dyspnea of insidious onset with or without cough, production of scant white and frothy sputum, and diffuse radiographic infiltrates in a previously healthy adult, but it can also occur in children as young as 3 years. Digital clubbing, fever, and hemoptysis are not typical, and the latter two indicate that intercurrent infection may be present. Low prevalence and nonspecific clinical, radiological, and laboratory findings commonly lead to misdiagnosis as pneumonia and substantially delay an accurate diagnosis. The clinical course, although variable, usually includes progressive hypoxemic respiratory insufficiency and, in some patients, secondary infections, pulmonary fibrosis, respiratory failure, and death. Two decades of research have raised autoimmune PAP from obscurity to a paradigm of molecular pathogenesis-based diagnostic and therapeutic development. Pathogenesis is driven by GM-CSF (granulocyte/macrophage colony-stimulating factor) autoantibodies, which are present at high concentrations in blood and tissues and form the basis of an accurate, commercially available diagnostic blood test with sensitivity and specificity of 100%. Although whole-lung lavage remains the first-line therapy, inhaled GM-CSF is a promising pharmacotherapeutic approach demonstrated in well-controlled trials to be safe, well tolerated, and efficacious. Research has established GM-CSF as a pulmonary regulatory molecule critical to surfactant homeostasis, alveolar stability, lung function, and host defense.


Subject(s)
Autoimmune Diseases , Pulmonary Alveolar Proteinosis , Adult , Autoimmune Diseases/diagnosis , Autoimmune Diseases/therapy , Bronchoalveolar Lavage , Child , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Humans , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/pathology , Pulmonary Alveolar Proteinosis/therapy
8.
Medicina (Kaunas) ; 59(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36837444

ABSTRACT

The COVID-19 pandemic highlighted the importance of lung immune responses to pathogens and environmental factors [...].


Subject(s)
Air Pollution , COVID-19 , Humans , Pandemics , Lung , Immunity
9.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L438-L448, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35043685

ABSTRACT

Hereditary pulmonary alveolar proteinosis (hPAP) is a rare disorder caused by recessive mutations in GM-CSF receptor subunit α/ß genes (CSF2RA/CSF2RB, respectively) characterized by impaired GM-CSF-dependent surfactant clearance by alveolar macrophages (AMs) resulting in alveolar surfactant accumulation and hypoxemic respiratory failure. Because hPAP is caused by CSF2RA mutations in most patients, we created an animal model of hPAP caused by Csf2ra gene disruption (Csf2ra-/- mice) and evaluated the effects on AMs and lungs. Macrophages from Csf2ra-/- mice were unable to bind and clear GM-CSF, did not exhibit GM-CSF signaling, and had functional defects in phagocytosis, cholesterol clearance, and surfactant clearance. Csf2ra-/- mice developed a time-dependent, progressive lung disease similar to hPAP in children caused by CSF2RA mutations with respect to the clinical, physiological, histopathological, biochemical abnormalities, biomarkers of PAP lung disease, and clinical course. In contrast, Csf2ra+/- mice had functionally normal AMs and no lung disease. Pulmonary macrophage transplantation (PMT) without myeloablation resulted in long-term engraftment, restoration of GM-CSF responsiveness to AMs, and a safe and durable treatment effect that lasted for the duration of the experiment (6 mo). Results demonstrate that homozygous (but not heterozygous) Csf2ra gene ablation caused hPAP identical to hPAP in children with CSF2RA mutations, identified AMs as the cellular site of hPAP pathogenesis in Csf2ra-/- mice, and have implications for preclinical studies supporting the translation of PMT as therapy of hPAP in humans.


Subject(s)
Pulmonary Alveolar Proteinosis , Pulmonary Surfactants , Animals , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Macrophages, Alveolar/metabolism , Mice , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/metabolism , Pulmonary Surfactants/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Surface-Active Agents/metabolism
10.
Cancer Metastasis Rev ; 40(2): 589-601, 2021 06.
Article in English | MEDLINE | ID: mdl-33855679

ABSTRACT

Exosomes are major contributors in cell to cell communication due to their ability to transfer biological material such as protein, RNA, DNA, and miRNA. Additionally, they play a role in tumor initiation, promotion, and progression, and recently, they have emerged as a potential source of information on tumor detection and may be useful as diagnostic, prognostic, and predictive tools. This review focuses on exosomes from lung cancer with a focus on EGFR mutations. Here, we outline the role of exosomes and their functional effect in carcinogenesis, tumor progression, and metastasis. Finally, we discuss the possibility of exosomes as novel biomarkers in early detection, diagnosis, assessment of prognosis, and prediction of therapeutic response in EGFR-mutated lung cancer.


Subject(s)
ErbB Receptors/genetics , Exosomes/metabolism , Exosomes/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mutation , Animals , Carcinogenesis , Disease Progression , ErbB Receptors/metabolism , Exosomes/genetics , Humans , Lung Neoplasms/genetics , Neoplasm Metastasis
11.
Respirology ; 27(7): 539-548, 2022 07.
Article in English | MEDLINE | ID: mdl-35513341

ABSTRACT

The last 2 years have presented previously unforeseen challenges in pulmonary medicine. Despite the significant impact of the SARS-CoV-2 pandemic on patients, clinicians and communities, advances in the care and understanding of interstitial lung disease (ILD) continued unabated. Recent studies have led to improved guidelines, better understanding of the role for antifibrotics in fibrosing ILDs, prognostic indicators and novel biomarkers. In this concise contemporary review, we summarize many of the important studies published in 2021, highlighting their relevance and impact to the management and knowledge of ILD.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , COVID-19/epidemiology , Disease Progression , Fibrosis , Humans , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/therapy , SARS-CoV-2
12.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269582

ABSTRACT

Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.


Subject(s)
Apolipoproteins/metabolism , Caspases/metabolism , Complement System Proteins/metabolism , Cytokines/metabolism , alpha 1-Antitrypsin/metabolism , Binding Sites/genetics , COVID-19/metabolism , COVID-19/virology , Glycosylation , Humans , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/physiology , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/metabolism
13.
Medicina (Kaunas) ; 58(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35334588

ABSTRACT

Since commercial development in 2003, the usage of modern electronic cigarette (e-cigarette) continues to increase amongst people who have never smoked, ex-smokers who have switched to e-cigarettes, and dual-users of both conventional cigarettes and e-cigarettes. With such an increase in use, knowledge of the irritative, toxic and potential carcinogenic effects on the lungs is increasing. This review article will discuss the background of e-cigarettes, vaping devices and explore their popularity. We will further summarise the available literature describing the mechanism of lung injury caused by e-cigarette or vaping use.


Subject(s)
Electronic Nicotine Delivery Systems , Lung Injury , Smoking Cessation , Tobacco Products , Vaping , Humans , Lung Injury/etiology , Vaping/adverse effects
14.
Medicina (Kaunas) ; 58(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36013497

ABSTRACT

Chronic obstructive pulmonary disease (COPD) patients frequently suffer from multiple comorbidities, resulting in poor outcomes for these patients. Diabetes is observed at a higher frequency in COPD patients than in the general population. Both type 1 and 2 diabetes mellitus are associated with pulmonary complications, and similar therapeutic strategies are proposed to treat these conditions. Epidemiological studies and disease models have increased our knowledge of these clinical associations. Several recent genome-wide association studies have identified positive genetic correlations between lung function and obesity, possibly due to alterations in genes linked to cell proliferation; embryo, skeletal, and tissue development; and regulation of gene expression. These studies suggest that genetic predisposition, in addition to weight gain, can influence lung function. Cigarette smoke exposure can also influence the differential methylation of CpG sites in genes linked to diabetes and COPD, and smoke-related single nucleotide polymorphisms are associated with resting heart rate and coronary artery disease. Despite the vast literature on clinical disease association, little direct mechanistic evidence is currently available demonstrating that either disease influences the progression of the other, but common pharmacological approaches could slow the progression of these diseases. Here, we review the clinical and scientific literature to discuss whether mechanisms beyond preexisting conditions, lifestyle, and weight gain contribute to the development of COPD associated with diabetes. Specifically, we outline environmental and genetic confounders linked with these diseases.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Pulmonary Disease, Chronic Obstructive , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Humans , Lung , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Weight Gain
15.
Curr Opin Pulm Med ; 27(5): 405-413, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34172623

ABSTRACT

PURPOSE OF REVIEW: Unclassifiable interstitial lung disease (ILD) comprises a subset of ILDs which cannot be classified according to the current diagnostic framework. This is a likely a heterogeneous group of diseases rather than a single entity and it is poorly defined and hence problematic for prognosis and therapy. RECENT FINDINGS: With increased treatment options for progressive fibrosing ILD it is increasingly relevant to correctly categorise ILD. SUMMARY: This review article will summarise the definition and reasons for a diagnosis of unclassifiable ILD, the current management options and possible future approaches to improve diagnosis and differentiation within this broad subset. Finally, we will describe the implications of the labelling of unclassifiable ILD in clinical practice and research and whether the term 'unclassified' should be used, implying a less definitive diagnosis.


Subject(s)
Lung Diseases, Interstitial , Pulmonary Fibrosis , Disease Progression , Humans , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/therapy , Prognosis
16.
Medicina (Kaunas) ; 57(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33923873

ABSTRACT

Alpha-1 antitrypsin (AAT) has established anti-inflammatory and immunomodulatory effects in chronic obstructive pulmonary disease but there is increasing evidence of its role in other inflammatory and immune-mediated conditions, like diabetes mellitus (DM). AAT activity is altered in both developing and established type 1 diabetes mellitus (T1DM) as well in established type 2 DM (T2DM). Augmentation therapy with AAT appears to favorably impact T1DM development in mice models and to affect ß-cell function and inflammation in humans with T1DM. The role of AAT in T2DM is less clear, but AAT activity appears to be reduced in T2DM. This article reviews these associations and emerging therapeutic strategies using AAT to treat DM.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , alpha 1-Antitrypsin Deficiency , Animals , Anti-Inflammatory Agents/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Inflammation/drug therapy , Mice , alpha 1-Antitrypsin Deficiency/drug therapy
17.
Am J Respir Cell Mol Biol ; 62(1): 87-94, 2020 01.
Article in English | MEDLINE | ID: mdl-31310562

ABSTRACT

Desquamative interstitial pneumonia (DIP) is a rare, smoking-related, diffuse parenchymal lung disease characterized by marked accumulation of alveolar macrophages (AMs) and emphysema, without extensive fibrosis or neutrophilic inflammation. Because smoking increases expression of pulmonary GM-CSF (granulocyte/macrophage-colony stimulating factor) and GM-CSF stimulates proliferation and activation of AMs, we hypothesized that chronic exposure of mice to increased pulmonary GM-CSF may recapitulate DIP. Wild-type (WT) mice were subjected to inhaled cigarette smoke exposure for 16 months, and AM numbers and pulmonary GM-CSF mRNA levels were measured. After demonstrating that smoke inhalation increased pulmonary GM-CSF in WT mice, transgenic mice overexpressing pulmonary GM-CSF (SPC-GM-CSF+/+) were used to determine the effects of chronic exposure to increased pulmonary GM-CSF (without smoke inhalation) on accumulation and activation of AMs, pulmonary matrix metalloproteinase (MMP) expression and activity, lung histopathology, development of polycythemia, and survival. In WT mice, smoke exposure markedly increased pulmonary GM-CSF and AM accumulation. In unexposed SPC-GM-CSF+/+ mice, AMs were spontaneously activated as shown by phosphorylation of STAT5 (signal inducer and activator of transcription 5) and accumulated progressively with involvement of 84% (interquartile range, 55-90%) of the lung parenchyma by 10 months of age. Histopathologic features also included scattered multinucleated giant cells, alveolar epithelial cell hyperplasia, and mild alveolar wall thickening. SPC-GM-CSF+/+ mice had increased pulmonary MMP-9 and MMP-12 levels, spontaneously developed emphysema and secondary polycythemia, and had increased mortality compared with WT mice. Results show cigarette smoke increased pulmonary GM-CSF and AM proliferation, and chronically increased pulmonary GM-CSF recapitulated the cardinal features of DIP, including AM accumulation, emphysema, secondary polycythemia, and increased mortality in mice. These observations suggest pulmonary GM-CSF may be involved in the pathogenesis of DIP.


Subject(s)
Genetic Diseases, Inborn/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Lung Diseases, Interstitial/metabolism , Lung/metabolism , Macrophages, Alveolar/metabolism , Pulmonary Alveoli/metabolism , Animals , Emphysema/metabolism , Epithelial Cells/metabolism , Hyperplasia/metabolism , Matrix Metalloproteinase 12/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Polycythemia/metabolism , STAT5 Transcription Factor/metabolism , Smoking/metabolism
18.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L137-L147, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32159969

ABSTRACT

Neutrophil extracellular traps (NETs) provide host defense but can contribute to the pathobiology of diverse human diseases. We sought to determine the extent and mechanism by which NETs contribute to human airway cell inflammation. Primary normal human bronchial epithelial cells (HBEs) grown at air-liquid interface and wild-type (wt)CFBE41o- cells (expressing wtCFTR) were exposed to cell-free NETs from unrelated healthy volunteers for 18 h in vitro. Cytokines were measured in the apical supernatant by Luminex, and the effect on the HBE transcriptome was assessed by RNA sequencing. NETs consistently stimulated IL-8, TNF-α, and IL-1α secretion by HBEs from multiple donors, with variable effects on other cytokines (IL-6, G-CSF, and GM-CSF). Expression of HBE RNAs encoding IL-1 family cytokines, particularly IL-36 subfamily members, was increased in response to NETs. NET exposure in the presence of anakinra [recombinant human IL-1 receptor antagonist (rhIL-1RA)] dampened NET-induced changes in IL-8 and TNF-α proteins as well as IL-36α RNA. rhIL-36RA limited the increase in expression of proinflammatory cytokine RNAs in HBEs exposed to NETs. NETs selectively upregulate an IL-1 family cytokine response in HBEs, which enhances IL-8 production and is limited by rhIL-1RA. The present findings describe a unique mechanism by which NETs may contribute to inflammation in human lung disease in vivo. NET-driven IL-1 signaling may represent a novel target for modulating inflammation in diseases characterized by a substantial NET burden.


Subject(s)
Bronchi/cytology , Epithelial Cells/metabolism , Extracellular Traps/metabolism , Interleukin-1/metabolism , Interleukin-8/metabolism , Adult , Cell Line , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Inflammation Mediators/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Leukocyte Elastase/metabolism , Peroxidase/metabolism , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Transcription, Genetic/drug effects
19.
Thorax ; 75(4): 321-330, 2020 04.
Article in English | MEDLINE | ID: mdl-31959730

ABSTRACT

INTRODUCTION: Alpha-1 antitrypsin (AAT) deficiency (AATD) is associated with early onset emphysema. The aim of this study was to investigate whether AAT binding to plasma constituents could regulate their activation, and in AATD, exploit this binding event to better understand the condition and uncover novel biomarkers of therapeutic efficacy. METHODS: To isolate AAT linker proteins, plasma samples were separated by size exclusion chromatography, followed by co-immunoprecipitation. AAT binding proteins were identified by mass spectrometry. Complement turnover and activation was determined by ELISA measurement of C3, C3a and C3d levels in plasma of healthy controls (n=15), AATD (n=51), non-AATD patients with obstructive airway disease (n=10) and AATD patients post AAT augmentation therapy (n=5). RESULTS: Direct binding of complement C3 to AAT was identified in vivo and in vitro. Compared with healthy controls, a breakdown product of C3, C3d, was increased in AATD (0.04 µg/mL vs 1.96 µg/mL, p=0.0002), with a significant correlation between radiographic pulmonary emphysema and plasma levels of C3d (R2=0.37, p=0.001). In vivo, AAT augmentation therapy significantly reduced plasma levels of C3d in comparison to patients not receiving AAT therapy (0.15 µg/mL vs 2.18 µg/mL, respectively, p=0.001). DISCUSSION: Results highlight the immune-modulatory impact of AAT on the complement system, involving an important potential role for complement activation in disease pathogenesis in AATD. The association between plasma C3d levels and pulmonary disease severity, that decrease in response to AAT augmentation therapy, supports the exploration of C3d as a candidate biomarker of therapeutic efficacy in AATD.


Subject(s)
Complement C3/metabolism , Pulmonary Emphysema/epidemiology , Respiration Disorders/epidemiology , alpha 1-Antitrypsin Deficiency/epidemiology , alpha 1-Antitrypsin Deficiency/therapy , alpha 1-Antitrypsin/therapeutic use , Aged , Analysis of Variance , Biomarkers/blood , Blotting, Western , Case-Control Studies , Comorbidity , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Mass Spectrometry/methods , Middle Aged , Pulmonary Emphysema/blood , Pulmonary Emphysema/diagnosis , Reference Values , Respiration Disorders/blood , Respiration Disorders/diagnosis , Severity of Illness Index , Statistics, Nonparametric , Treatment Outcome , alpha 1-Antitrypsin Deficiency/diagnosis
20.
Semin Respir Crit Care Med ; 41(2): 288-298, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32279299

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by progressive accumulation of pulmonary surfactant. This results in dyspnea, secondary pulmonary and systemic infection, and in some cases respiratory failure. PAP syndrome occurs in distinct diseases, classified according to pathogenetic mechanism; these include primary PAP (due to disruption of granulocyte-macrophage colony-stimulating factor [GM-CSF] signaling), secondary PAP (due to reduction in alveolar macrophage numbers/functions), and congenital PAP (due to disruption of surfactant production). In primary PAP, the most common cause is autoimmune PAP, which accounts for over 90% of all PAP syndrome. The pathogenesis is driven by reduced GM-CSF-signaling causing abnormal alveolar macrophage function which subsequently results in impaired alveolar surfactant clearance. Autoimmune PAP can be accurately diagnosed by serum GM-CSF autoantibody levels and there now exist other diagnostic tests for rare causes of PAP syndrome. The current standard treatment is whole lung lavage; however, there is emerging evidence to support the use of novel therapeutic approaches, including inhaled GM-CSF, immune modulation, gene and cell therapy, and targeting macrophage cholesterol homeostasis. Furthermore, several innovative approaches to monitor disease severity and response to therapy have recently been developed.


Subject(s)
Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/therapy , Bronchoalveolar Lavage/methods , Bronchoscopy , Clinical Trials as Topic , Dyspnea/etiology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Macrophages, Alveolar/immunology , Pulmonary Alveolar Proteinosis/epidemiology , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Surfactants/metabolism , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL