Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Proteomics ; 19(11): e1800433, 2019 06.
Article in English | MEDLINE | ID: mdl-30784174

ABSTRACT

Chemical proteomics enables comprehensive profiling of small molecules in complex proteomes. A critical component to understand the interactome of a small molecule is the precise location on a protein where the interaction takes place. Several approaches have been developed that take advantage of bio-orthogonal chemistry and subsequent enrichment steps to isolate peptides modified by small molecules. These methods rely on target identification at the level of mass spectrometry making it difficult to interpret an experiment when modified peptides are not identified. Herein, an approach in which fluorescence-triggered two-dimensional chromatography enables the isolation of small molecule-conjugated peptides prior to mass spectrometry analysis is described. In this study, a bromocoumarin moiety has been utilized that fluoresces and generates a distinct isotopic signature to locate and identify modified peptides. Profiling of a cellular cysteinome with the use of a bromocoumarin tag demonstrates that two-dimensional fluorescence-based chromatography separation can enable the identification of proteins containing reactive cysteine residues. Moreover, the method facilitates the interrogation of low abundance proteins with greater depth and sensitivity than a previously reported isotope-targeted approach. Lastly, this workflow enables the identification of small-molecule modified peptides from a protein-of-interest.


Subject(s)
Coumarins/chemistry , Cysteine/analysis , Fluorescent Dyes/chemistry , Peptides/chemistry , Fluorescence , Halogenation , Humans , K562 Cells , Proteomics/methods , Tandem Mass Spectrometry/methods
2.
Nat Prod Rep ; 35(9): 847-878, 2018 09 19.
Article in English | MEDLINE | ID: mdl-29916519

ABSTRACT

Covering: up to 2018 Thioester reductase domains catalyze two- and four-electron reductions to release natural products following assembly on nonribosomal peptide synthetases, polyketide synthases, and their hybrid biosynthetic complexes. This reductive off-loading of a natural product yields an aldehyde or alcohol, can initiate the formation of a macrocyclic imine, and contributes to important intermediates in a variety of biosyntheses, including those for polyketide alkaloids and pyrrolobenzodiazepines. Compounds that arise from reductase-terminated biosynthetic gene clusters are often reactive and exhibit biological activity. Biomedically important examples include the cancer therapeutic Yondelis (ecteinascidin 743), peptide aldehydes that inspired the first therapeutic proteasome inhibitor bortezomib, and numerous synthetic derivatives and antibody drug conjugates of the pyrrolobenzodiazepines. Recent advances in microbial genomics, metabolomics, bioinformatics, and reactivity-based labeling have facilitated the detection of these compounds for targeted isolation. Herein, we summarize known natural products arising from this important category, highlighting their occurrence in Nature, biosyntheses, biological activities, and the technologies used for their detection and identification. Additionally, we review publicly available genomic data to highlight the remaining potential for novel reductively tailored compounds and drug leads from microorganisms. This thorough retrospective highlights various molecular families with especially privileged bioactivity while illuminating challenges and prospects toward accelerating the discovery of new, high value natural products.


Subject(s)
Biological Products/metabolism , Peptide Synthases/metabolism , Polyketide Synthases/metabolism , Alkaloids/biosynthesis , Alkaloids/chemistry , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/metabolism , Benzodiazepinones/chemistry , Benzodiazepinones/metabolism , Biological Products/chemistry , Biological Products/pharmacology , Biosynthetic Pathways/genetics , Cyclization , Depsipeptides/chemistry , Depsipeptides/metabolism , Dipeptides/chemistry , Dipeptides/metabolism , Indoles/chemistry , Indoles/metabolism , Lactams/chemistry , Lactams/metabolism , Leupeptins/chemistry , Leupeptins/metabolism , Lysine/analogs & derivatives , Lysine/chemistry , Lysine/metabolism , Multigene Family , Peptide Synthases/genetics , Polyketide Synthases/genetics , Protein Domains
3.
Mol Cancer Res ; 22(8): 689-698, 2024 08 02.
Article in English | MEDLINE | ID: mdl-38747975

ABSTRACT

Small-cell lung cancer (SCLC) accounts for nearly 15% of all lung cancers. Although patients respond to first-line therapy readily, rapid relapse is inevitable, with few treatment options in the second-line setting. Here, we describe SCLC cell lines harboring amplification of MYC and MYCN but not MYCL1 or non-amplified MYC cell lines exhibit superior sensitivity to treatment with the pan-BET bromodomain protein inhibitor mivebresib (ABBV075). Silencing MYC and MYCN partially rescued SCLC cell lines harboring these respective amplifications from the antiproliferative effects of mivebresib. Further characterization of genome-wide binding of MYC, MYCN, and MYCL1 uncovered unique enhancer and epigenetic preferences. Implications: Our study suggests that chromatin landscapes can establish cell states with unique gene expression programs, conveying sensitivity to epigenetic inhibitors such as mivebresib.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Line, Tumor , Gene Amplification , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Bromodomain Containing Proteins , Proteins , Pyridones , Sulfonamides
4.
ACS Chem Biol ; 19(7): 1604-1615, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38980123

ABSTRACT

Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.


Subject(s)
Proteolysis , Humans , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Proteasome Endopeptidase Complex/metabolism
5.
Mol Cancer Ther ; 23(7): 949-960, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38507740

ABSTRACT

The activated B cell (ABC) subset of diffuse large B-cell lymphoma (DLBCL) is characterized by chronic B-cell receptor signaling and associated with poor outcomes when treated with standard therapy. In ABC-DLBCL, MALT1 is a core enzyme that is constitutively activated by stimulation of the B-cell receptor or gain-of-function mutations in upstream components of the signaling pathway, making it an attractive therapeutic target. We discovered a novel small-molecule inhibitor, ABBV-MALT1, that potently shuts down B-cell signaling selectively in ABC-DLBCL preclinical models leading to potent cell growth and xenograft inhibition. We also identified a rational combination partner for ABBV-MALT1 in the BCL2 inhibitor, venetoclax, which when combined significantly synergizes to elicit deep and durable responses in preclinical models. This work highlights the potential of ABBV-MALT1 monotherapy and combination with venetoclax as effective treatment options for patients with ABC-DLBCL.


Subject(s)
Drug Synergism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Xenograft Model Antitumor Assays , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Humans , Animals , Mice , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Cell Proliferation/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Disease Models, Animal
6.
J Am Chem Soc ; 135(28): 10449-56, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23763305

ABSTRACT

Due to the importance of proteases in regulating cellular processes, the development of protease inhibitors has garnered great attention. Peptide-based aldehydes are a class of compounds that exhibit inhibitory activities against various proteases and proteasomes in the context of anti-proliferative treatments for cancer and other diseases. More than a dozen peptide-based natural products containing aldehydes have been discovered such as chymostatin, leupeptin, and fellutamide; however, the biosynthetic origin of the aldehyde functionality has yet to be elucidated. Herein we describe the discovery of a new group of lipopeptide aldehydes, the flavopeptins, and the corresponding biosynthetic pathway arising from an orphan gene cluster in Streptomyces sp. NRRL-F6652, a close relative of Streptomyces flavogriseus ATCC 33331. This research was initiated using a proteomics approach that screens for expressed enzymes involved in secondary metabolism in microorganisms. Flavopeptins are synthesized through a non-ribosomal peptide synthetase containing a terminal NAD(P)H-dependent reductase domain likely for the reductive release of the peptide with a C-terminal aldehyde. Solid-phase peptide synthesis of several flavopeptin species and derivatives enabled structural verification and subsequent screening of biological activity. Flavopeptins exhibit sub-micromolar inhibition activities against cysteine proteases such as papain and calpain as well as the human 20S proteasome. They also show anti-proliferative activities against multiple myeloma and lymphoma cell lines.


Subject(s)
Aldehydes/pharmacology , Antineoplastic Agents/pharmacology , Oligopeptides/pharmacology , Oxidoreductases/metabolism , Peptide Synthases/metabolism , Proteasome Inhibitors/pharmacology , Proteomics , Aldehydes/chemistry , Aldehydes/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Calpain/antagonists & inhibitors , Calpain/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Oligopeptides/biosynthesis , Oligopeptides/chemistry , Oxidoreductases/chemistry , Papain/antagonists & inhibitors , Papain/metabolism , Peptide Synthases/chemistry , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/metabolism , Structure-Activity Relationship
7.
ACS Chem Biol ; 17(6): 1315-1320, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35580266

ABSTRACT

Interleukin-1 receptor-associated kinase 3 (IRAK3) is a pseudokinase mediator in the human inflammatory pathway, and ablation of its function is associated with enhanced antitumor immunity. Traditionally, pseudokinases have eluded "druggability" and have not been considered tractable targets in the pharmaceutical industry. Herein we disclose a CRISPR/Cas9-mediated knockout of IRAK3 in monocyte-derived dendritic cells that results in an increase in IL-12 production upon lipopolysaccharide (LPS) stimulation. Furthermore, we disclose and characterize Degradomer D-1, which displays selective proteasomal degradation of IRAK3 and reproduces the 1L-12p40 increases observed in the CRISPR/Cas9 knockout.


Subject(s)
Cytokines , Interleukin-1 Receptor-Associated Kinases , Cytokines/metabolism , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-12/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Monocytes/metabolism
8.
ACS Chem Biol ; 17(3): 556-566, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35188729

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1) is an MAP4K family member within the Ste20-like serine/threonine branch of the kinome. HPK1 expression is limited to hematopoietic cells and has a predominant role as a negative regulator of T cell function. Because of the central/dominant role in negatively regulating T cell function, HPK1 has long been in the center of interest as a potential pharmacological target for immune therapy. The development of a small molecule HPK1 inhibitor remains challenging because of the need for high specificity relative to other kinases, including additional MAP4K family members, that are required for efficient immune cell activation. Here, we report the identification of the selective and potent HPK1 chemical probe, A-745. In unbiased cellular kinase-binding assays, A-745 demonstrates an excellent cellular selectivity binding profile within pharmacologically relevant concentrations. This HPK1 selectivity translates to an in vitro immune cell activation phenotype reminiscent of Hpk1-deficient and Hpk1-kinase-dead T cells, including augmented proliferation and cytokine production. The results from this work give a path forward for further developmental efforts to generate additional selective and potent small molecule HPK1 inhibitors with the pharmacological properties for immunotherapy.


Subject(s)
Protein Serine-Threonine Kinases , T-Lymphocytes , Immunologic Factors , Immunotherapy , Signal Transduction
9.
ACS Med Chem Lett ; 9(8): 785-791, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30128068

ABSTRACT

Chemoproteomics is an invaluable tool to discover protein targets from phenotypic assays and to understand on- and off-target engagement of potential therapeutic compounds. Highlighted in this technology perspective is our view on how improvements in mass spectrometry (MS)-based proteomics technology have dramatically impacted chemoproteomics. Improvements in sample preparation, MS instrumentation, data acquisition, and quantification strategies have enabled medicinal chemists, chemical biologists, and mass spectrometrists to develop new chemoproteomic experiments and improve existing methods. As a result of improvements in MS, we will detail how bead-based affinity capture and activity-based proteome profiling methods have been reduced from multiple LC-MS runs for samples and controls down to a single LC-MS run each for sample and control. With improvements in scan duty cycle and sensitivity, sufficient depth of proteome coverage can be obtained for capture-free methods, which do not utilize an enrichment step.

10.
ACS Chem Biol ; 13(4): 1029-1037, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29510029

ABSTRACT

Natural products (NPs) are a rich source of medicines, but traditional discovery methods are often unsuccessful due to high rates of rediscovery. Genetic approaches for NP discovery are promising, but progress has been slow due to the difficulty of identifying unique biosynthetic gene clusters (BGCs) and poor gene expression. We previously developed the metabologenomics method, which combines genomic and metabolomic data to discover new NPs and their BGCs. Here, we utilize metabologenomics in combination with molecular networking to discover a novel class of NPs, the tyrobetaines: nonribosomal peptides with an unusual trimethylammonium tyrosine residue. The BGC for this unusual class of compounds was identified using metabologenomics and computational structure prediction data. Heterologous expression confirmed the BGC and suggests an unusual mechanism for trimethylammonium formation. Overall, the discovery of the tyrobetaines shows the great potential of metabologenomics combined with molecular networking and computational structure prediction for identifying interesting biosynthetic reactions and novel NPs.


Subject(s)
Biological Products/metabolism , Drug Discovery , Genomics , Metabolomics , Multigene Family , Betaine/analogs & derivatives , Biosynthetic Pathways
11.
ACS Synth Biol ; 6(1): 39-44, 2017 01 20.
Article in English | MEDLINE | ID: mdl-27478992

ABSTRACT

Genome sequencing has revealed that a far greater number of natural product biosynthetic pathways exist than there are known natural products. To access these molecules directly and deterministically, a new generation of heterologous expression methods is needed. Cell-free protein synthesis has not previously been used to study nonribosomal peptide biosynthesis, and provides a tunable platform with advantages over conventional methods for protein expression. Here, we demonstrate the use of cell-free protein synthesis to biosynthesize a cyclic dipeptide with correct absolute stereochemistry. From a single-pot reaction, we measured the expression of two nonribosomal peptide synthetases larger than 100 kDa, and detected high-level production of a diketopiperazine. Using quantitative LC-MS and synthetically prepared standard, we observed production of this metabolite at levels higher than previously reported from cell-based recombinant expression, approximately 12 mg/L. Overall, this work represents a first step to apply cell-free protein synthesis to discover and characterize new natural products.


Subject(s)
DNA/genetics , Peptide Biosynthesis, Nucleic Acid-Independent/genetics , Biosynthetic Pathways , Cell-Free System , Chromatography, Liquid , Dipeptides/biosynthesis , Dipeptides/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gramicidin/biosynthesis , Gramicidin/chemistry , In Vitro Techniques , Mass Spectrometry , Peptide Synthases/metabolism , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/chemistry , Piperazines/chemistry , Piperazines/metabolism , Synthetic Biology
12.
Methods Mol Biol ; 1401: 135-47, 2016.
Article in English | MEDLINE | ID: mdl-26831706

ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS)-based proteomics is a powerful technique for the profiling of protein expression in cells in a high-throughput fashion. Herein we report a protocol using LC-MS/MS-based proteomics for the screening of enzymes involved in natural product biosynthesis, such as nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) from bacterial strains. Taking advantage of the large size of modular NRPSs and PKSs (often >200 kDa), size-based separation (SDS-PAGE) is employed prior to LC-MS/MS analysis. Based upon the protein identifications obtained through software search, we can accurately pinpoint the expressed NRPS and/or PKS gene clusters from a given strain and growth condition. The proteomics screening result can be used to guide the discovery of potentially new nonribosomal peptide and polyketide natural products.


Subject(s)
Actinobacteria/enzymology , Peptide Synthases/analysis , Polyketide Synthases/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , Actinobacteria/chemistry , Actinobacteria/growth & development , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel/methods
13.
ACS Chem Biol ; 11(8): 2117-23, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27310134

ABSTRACT

Unlocking the biochemical stores of fungi is key for developing future pharmaceuticals. Through reduced expression of a critical histone deacetylase in Aspergillus nidulans, increases of up to 100-fold were observed in the levels of 15 new aspercryptins, recently described lipopeptides with two noncanonical amino acids derived from octanoic and dodecanoic acids. In addition to two NMR-verified structures, MS/MS networking helped uncover an additional 13 aspercryptins. The aspercryptins break the conventional structural orientation of lipopeptides and appear "backward" when compared to known compounds of this class. We have also confirmed the 14-gene aspercryptin biosynthetic gene cluster, which encodes two fatty acid synthases and several enzymes to convert saturated octanoic and dodecanoic acid to α-amino acids.


Subject(s)
Aspergillus nidulans/metabolism , Histone Deacetylases/metabolism , Oligopeptides/metabolism , Aspergillus nidulans/enzymology , Chromatography, Liquid , Metabolomics , Multigene Family , Oligopeptides/biosynthesis , Oligopeptides/genetics , Tandem Mass Spectrometry
14.
ACS Chem Biol ; 11(12): 3452-3460, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27809474

ABSTRACT

As microbial genome sequencing becomes more widespread, the capacity of microorganisms to produce an immense number of metabolites has come into better view. Utilizing a metabolite/gene cluster correlation platform, the biosynthetic origins of a new family of natural products, the rimosamides, were discovered. The rimosamides were identified in Streptomyces rimosus and associated with their NRPS/PKS-type gene cluster based upon their high frequency of co-occurrence across 179 strains of actinobacteria. This also led to the discovery of the related detoxin gene cluster. The core of each of these families of natural products contains a depsipeptide bond at the point of bifurcation in their unusual branched structures, the origins of which are definitively assigned to nonlinear biosynthetic pathways via heterologous expression in Streptomyces lividans. The rimosamides were found to antagonize the antibiotic activity of blasticidin S against Bacillus cereus.


Subject(s)
Biological Products/metabolism , Dipeptides/metabolism , Phenylalanine/analogs & derivatives , Pyrrolidines/metabolism , Streptomyces rimosus/genetics , Streptomyces rimosus/metabolism , Biological Products/chemistry , Biosynthetic Pathways , Dipeptides/chemistry , Dipeptides/genetics , Genes, Bacterial , Metabolomics , Multigene Family , Phenylalanine/chemistry , Phenylalanine/genetics , Phenylalanine/metabolism , Pyrrolidines/chemistry , Streptomyces rimosus/chemistry
15.
ACS Cent Sci ; 2(2): 99-108, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-27163034

ABSTRACT

For more than half a century the pharmaceutical industry has sifted through natural products produced by microbes, uncovering new scaffolds and fashioning them into a broad range of vital drugs. We sought a strategy to reinvigorate the discovery of natural products with distinctive structures using bacterial genome sequencing combined with metabolomics. By correlating genetic content from 178 actinomycete genomes with mass spectrometry-enabled analyses of their exported metabolomes, we paired new secondary metabolites with their biosynthetic gene clusters. We report the use of this new approach to isolate and characterize tambromycin, a new chlorinated natural product, composed of several nonstandard amino acid monomeric units, including a unique pyrrolidine-containing amino acid we name tambroline. Tambromycin shows antiproliferative activity against cancerous human B- and T-cell lines. The discovery of tambromycin via large-scale correlation of gene clusters with metabolites (a.k.a. metabologenomics) illuminates a path for structure-based discovery of natural products at a sharply increased rate.

16.
ACS Chem Biol ; 10(6): 1535-41, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25815712

ABSTRACT

The microbial world offers a rich source of bioactive compounds for those able to sift through it. Technologies capable of quantitatively detecting natural products while simultaneously identifying known compounds would expedite the search for new pharmaceutical leads. Prior efforts have targeted histone deacetylases in fungi to globally activate the production of new secondary metabolites, yet no study has directly assessed its effects with minimal bias at the metabolomic level. Using untargeted metabolomics, we monitored changes in >1000 small molecules secreted from the model fungus, Aspergillus nidulans, following genetic or chemical reductions in histone deacetylase activity (HDACi). Through quantitative, differential analyses, we found that nearly equal numbers of compounds were up- and down-regulated by >100 fold. We detected products from both known and unknown biosynthetic pathways and discovered that A. nidulans is capable of producing fellutamides, proteasome inhibitors whose expression was induced by ∼100 fold or greater upon HDACi. This work adds momentum to an "omics"-driven resurgence in natural products research, where direct detection replaces bioactivity as the primary screen for new pharmacophores.


Subject(s)
Aspergillus nidulans/drug effects , Fungal Proteins/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Metabolome/drug effects , Aspergillus nidulans/enzymology , Aspergillus nidulans/genetics , DNA Methylation , Epigenesis, Genetic , Fungal Proteins/genetics , Fungal Proteins/metabolism , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/genetics , Lipopeptides/biosynthesis , Lipopeptides/isolation & purification , Metabolome/genetics , Metabolomics , Multigene Family , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
17.
Medchemcomm ; 4(1): 233-238, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23336063

ABSTRACT

"Omic" strategies have been increasingly applied to natural product discovery processes, with (meta-)genome sequencing and mining implemented in many laboratories to date. Using the proteomics-based discovery platform called PrISM (Proteomic Investigation of Secondary Metabolism), we discovered two new siderophores gobichelin A and B from Streptomyces sp. NRRL F-4415, a strain without a sequenced genome. Using the proteomics information as a guide, the 37 kb gene cluster responsible for production of gobichelins was sequenced and its 20 open reading frames interpreted into a biosynthetic scheme. This led to the targeted detection and structure elucidation of the new compounds produced by nonribosomal peptide (NRP) synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL