Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Annu Rev Immunol ; 32: 367-402, 2014.
Article in English | MEDLINE | ID: mdl-24471431

ABSTRACT

Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.


Subject(s)
Cell Differentiation , Microglia/cytology , Microglia/physiology , Animals , Homeostasis , Humans , Infections/etiology , Neurodegenerative Diseases/etiology , Obsessive-Compulsive Disorder/etiology
2.
Nat Immunol ; 24(7): 1110-1123, 2023 07.
Article in English | MEDLINE | ID: mdl-37248420

ABSTRACT

Cerebrovascular injury (CVI) is a common pathology caused by infections, injury, stroke, neurodegeneration and autoimmune disease. Rapid resolution of a CVI requires a coordinated innate immune response. In the present study, we sought mechanistic insights into how central nervous system-infiltrating monocytes program resident microglia to mediate angiogenesis and cerebrovascular repair after an intracerebral hemorrhage. In the penumbrae of human stroke brain lesions, we identified a subpopulation of microglia that express vascular endothelial growth factor A. These cells, termed 'repair-associated microglia' (RAMs), were also observed in a rodent model of CVI and coexpressed interleukin (IL)-6Ra. Cerebrovascular repair did not occur in IL-6 knockouts or in mice lacking microglial IL-6Ra expression and single-cell transcriptomic analyses revealed faulty RAM programming in the absence of IL-6 signaling. Infiltrating CCR2+ monocytes were the primary source of IL-6 after a CVI and were required to endow microglia with proliferative and proangiogenic properties. Faulty RAM programming in the absence of IL-6 or inflammatory monocytes resulted in poor cerebrovascular repair, neuronal destruction and sustained neurological deficits that were all restored via exogenous IL-6 administration. These data provide a molecular and cellular basis for how monocytes instruct microglia to repair damaged brain vasculature and promote functional recovery after injury.


Subject(s)
Monocytes , Stroke , Mice , Humans , Animals , Microglia , Interleukin-6/genetics , Interleukin-6/metabolism , Vascular Endothelial Growth Factor A/metabolism , Stroke/pathology , Brain/metabolism , Mice, Inbred C57BL
3.
Nat Immunol ; 24(12): 2121-2134, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945821

ABSTRACT

The T cell antigen receptor (TCR) contains ten immunoreceptor tyrosine-based activation motif (ITAM) signaling sequences distributed within six CD3 subunits; however, the reason for such structural complexity and multiplicity is unclear. Here we evaluated the effect of inactivating the three CD3ζ chain ITAMs on TCR signaling and T cell effector responses using a conditional 'switch' mouse model. Unexpectedly, we found that T cells expressing TCRs containing inactivated (non-signaling) CD3ζ ITAMs (6F-CD3ζ) exhibited reduced ability to discriminate between low- and high-affinity ligands, resulting in enhanced signaling and cytokine responses to low-affinity ligands because of a previously undetected inhibitory function of CD3ζ ITAMs. Also, 6F-CD3ζ TCRs were refractory to antagonism, as predicted by a new in silico adaptive kinetic proofreading model that revises the role of ITAM multiplicity in TCR signaling. Finally, T cells expressing 6F-CD3ζ displayed enhanced cytolytic activity against solid tumors expressing low-affinity ligands, identifying a new counterintuitive approach to TCR-mediated cancer immunotherapy.


Subject(s)
Immunoreceptor Tyrosine-Based Activation Motif , Receptors, Antigen, T-Cell , Animals , Mice , CD3 Complex , Ligands , Peptides , T-Lymphocytes
4.
Nat Immunol ; 23(4): 594-604, 2022 04.
Article in English | MEDLINE | ID: mdl-35354951

ABSTRACT

While T cell receptor (TCR) αß+CD8α+CD8ß- intraepithelial lymphocytes (CD8αα+ IELs) differentiate from thymic IEL precursors (IELps) and contribute to gut homeostasis, the transcriptional control of their development remains poorly understood. In the present study we showed that mouse thymocytes deficient for the transcription factor leukemia/lymphoma-related factor (LRF) failed to generate TCRαß+CD8αα+ IELs and their CD8ß-expressing counterparts, despite giving rise to thymus and spleen CD8αß+ T cells. LRF-deficient IELps failed to migrate to the intestine and to protect against T cell-induced colitis, and had impaired expression of the gut-homing integrin α4ß7. Single-cell RNA-sequencing found that LRF was necessary for the expression of genes characteristic of the most mature IELps, including Itgb7, encoding the ß7 subunit of α4ß7. Chromatin immunoprecipitation and gene-regulatory network analyses both defined Itgb7 as an LRF target. Our study identifies LRF as an essential transcriptional regulator of IELp maturation in the thymus and subsequent migration to the intestinal epithelium.


Subject(s)
Intraepithelial Lymphocytes , Leukemia , Lymphoma , Animals , CD8 Antigens/genetics , CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , Integrin beta Chains , Intestinal Mucosa/metabolism , Intraepithelial Lymphocytes/metabolism , Leukemia/metabolism , Lymphoma/metabolism , Mice , Mice, Knockout , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Transcription Factors/metabolism
5.
Nat Immunol ; 23(5): 731-742, 2022 05.
Article in English | MEDLINE | ID: mdl-35523960

ABSTRACT

T cell specificity and function are linked during development, as MHC-II-specific TCR signals generate CD4 helper T cells and MHC-I-specific TCR signals generate CD8 cytotoxic T cells, but the basis remains uncertain. We now report that switching coreceptor proteins encoded by Cd4 and Cd8 gene loci functionally reverses the T cell immune system, generating CD4 cytotoxic and CD8 helper T cells. Such functional reversal reveals that coreceptor proteins promote the helper-lineage fate when encoded by Cd4, but promote the cytotoxic-lineage fate when encoded in Cd8-regardless of the coreceptor proteins each locus encodes. Thus, T cell lineage fate is determined by cis-regulatory elements in coreceptor gene loci and is not determined by the coreceptor proteins they encode, invalidating coreceptor signal strength as the basis of lineage fate determination. Moreover, we consider that evolution selected the particular coreceptor proteins that Cd4 and Cd8 gene loci encode to avoid generating functionally reversed T cells because they fail to promote protective immunity against environmental pathogens.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Cell Differentiation , Cell Lineage/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Thymus Gland/metabolism
6.
Nat Immunol ; 23(12): 1714-1725, 2022 12.
Article in English | MEDLINE | ID: mdl-36411380

ABSTRACT

Increasing evidence indicates close interaction between immune cells and the brain, revising the traditional view of the immune privilege of the brain. However, the specific mechanisms by which immune cells promote normal neural function are not entirely understood. Mucosal-associated invariant T cells (MAIT cells) are a unique type of innate-like T cell with molecular and functional properties that remain to be better characterized. In the present study, we report that MAIT cells are present in the meninges and express high levels of antioxidant molecules. MAIT cell deficiency in mice results in the accumulation of reactive oxidative species in the meninges, leading to reduced expression of junctional protein and meningeal barrier leakage. The presence of MAIT cells restricts neuroinflammation in the brain and preserves learning and memory. Together, our work reveals a new functional role for MAIT cells in the meninges and suggests that meningeal immune cells can help maintain normal neural function by preserving meningeal barrier homeostasis and integrity.


Subject(s)
Mucosal-Associated Invariant T Cells , Animals , Mice , Brain , Meninges , Cognition , Oxidative Stress
7.
Cell ; 178(5): 1088-1101.e15, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442402

ABSTRACT

Mammals evolved in the face of fluctuating food availability. How the immune system adapts to transient nutritional stress remains poorly understood. Here, we show that memory T cells collapsed in secondary lymphoid organs in the context of dietary restriction (DR) but dramatically accumulated within the bone marrow (BM), where they adopted a state associated with energy conservation. This response was coordinated by glucocorticoids and associated with a profound remodeling of the BM compartment, which included an increase in T cell homing factors, erythropoiesis, and adipogenesis. Adipocytes, as well as CXCR4-CXCL12 and S1P-S1P1R interactions, contributed to enhanced T cell accumulation in BM during DR. Memory T cell homing to BM during DR was associated with enhanced protection against infections and tumors. Together, this work uncovers a fundamental host strategy to sustain and optimize immunological memory during nutritional challenges that involved a temporal and spatial reorganization of the memory pool within "safe haven" compartments.


Subject(s)
Bone Marrow/metabolism , Immunologic Memory , Animals , Bone Marrow/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Caloric Restriction/veterinary , Cell Line, Tumor , Chemokine CXCL12/metabolism , Diet, Reducing/veterinary , Energy Metabolism , Gene Expression Regulation , Glucocorticoids , Melanoma, Experimental/mortality , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CXCR4/metabolism , Survival Rate , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
8.
Nat Immunol ; 22(10): 1280-1293, 2021 10.
Article in English | MEDLINE | ID: mdl-34556874

ABSTRACT

Traumatic brain injury (TBI) and cerebrovascular injury are leading causes of disability and mortality worldwide. Systemic infections often accompany these disorders and can worsen outcomes. Recovery after brain injury depends on innate immunity, but the effect of infections on this process is not well understood. Here, we demonstrate that systemically introduced microorganisms and microbial products interfered with meningeal vascular repair after TBI in a type I interferon (IFN-I)-dependent manner, with sequential infections promoting chronic disrepair. Mechanistically, we discovered that MDA5-dependent detection of an arenavirus encountered after TBI disrupted pro-angiogenic myeloid cell programming via induction of IFN-I signaling. Systemic viral infection similarly blocked restorative angiogenesis in the brain parenchyma after intracranial hemorrhage, leading to chronic IFN-I signaling, blood-brain barrier leakage and a failure to restore cognitive-motor function. Our findings reveal a common immunological mechanism by which systemic infections deviate reparative programming after central nervous system injury and offer a new therapeutic target to improve recovery.


Subject(s)
Anti-Infective Agents/immunology , Brain Injuries, Traumatic/immunology , Central Nervous System/immunology , Immunity, Innate/immunology , Animals , Blood-Brain Barrier/immunology , Brain/immunology , Disease Models, Animal , Female , Interferon Type I/immunology , Male , Mice , Mice, Inbred C57BL , Signal Transduction/immunology
9.
Nat Immunol ; 22(3): 370-380, 2021 03.
Article in English | MEDLINE | ID: mdl-33574619

ABSTRACT

During chronic infection and cancer, a self-renewing CD8+ T cell subset maintains long-term immunity and is critical to the effectiveness of immunotherapy. These stem-like CD8+ T cells diverge from other CD8+ subsets early after chronic viral infection. However, pathways guarding stem-like CD8+ T cells against terminal exhaustion remain unclear. Here, we show that the gene encoding transcriptional repressor BACH2 is transcriptionally and epigenetically active in stem-like CD8+ T cells but not terminally exhausted cells early after infection. BACH2 overexpression enforced stem-like cell fate, whereas BACH2 deficiency impaired stem-like CD8+ T cell differentiation. Single-cell transcriptomic and epigenomic approaches revealed that BACH2 established the transcriptional and epigenetic programs of stem-like CD8+ T cells. In addition, BACH2 suppressed the molecular program driving terminal exhaustion through transcriptional repression and epigenetic silencing. Thus, our study reveals a new pathway that enforces commitment to stem-like CD8+ lineage and prevents an alternative terminally exhausted cell fate.


Subject(s)
Arenaviridae Infections/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Epigenesis, Genetic , Precursor Cells, T-Lymphoid/metabolism , Transcription, Genetic , Animals , Arenaviridae Infections/genetics , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Lineage , Cells, Cultured , Chronic Disease , Disease Models, Animal , Host-Pathogen Interactions , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Precursor Cells, T-Lymphoid/immunology , Precursor Cells, T-Lymphoid/virology , Signal Transduction
10.
Nat Immunol ; 20(4): 407-419, 2019 04.
Article in English | MEDLINE | ID: mdl-30886419

ABSTRACT

Tissue macrophages have an embryonic origin and can be replenished in some tissues under steady-state conditions by blood monocytes. However, little is known about the residency and properties of infiltrating monocytes after an inflammatory challenge. The meninges of the central nervous system (CNS) are populated by a dense network of macrophages that act as resident immune sentinels. Here we show that, following lymphocytic choriomeningitis virus infection, resident meningeal macrophages (MMs) acquired viral antigen and interacted directly with infiltrating cytotoxic T lymphocytes, which led to macrophage depletion. Concurrently, the meninges were infiltrated by inflammatory monocytes that engrafted the meningeal niche and remained in situ for months after viral clearance. This engraftment led to interferon-γ-dependent functional changes in the pool of MMs, including loss of bacterial and immunoregulatory sensors. Collectively, these data indicate that peripheral monocytes can engraft the meninges after an inflammatory challenge, imprinting the compartment with long-term defects in immune function.


Subject(s)
Central Nervous System/immunology , Macrophages/immunology , Meningitis, Viral/immunology , Monocytes/immunology , Animals , Immunity , Inflammation/immunology , Interferon-gamma/physiology , Meninges/immunology , Mice
12.
Nat Immunol ; 20(7): 890-901, 2019 07.
Article in English | MEDLINE | ID: mdl-31209400

ABSTRACT

Progenitor-like CD8+ T cells mediate long-term immunity to chronic infection and cancer and respond potently to immune checkpoint blockade. These cells share transcriptional regulators with memory precursor cells, including T cell-specific transcription factor 1 (TCF1), but it is unclear whether they adopt distinct programs to adapt to the immunosuppressive environment. By comparing the single-cell transcriptomes and epigenetic profiles of CD8+ T cells responding to acute and chronic viral infections, we found that progenitor-like CD8+ T cells became distinct from memory precursor cells before the peak of the T cell response. We discovered a coexpression gene module containing Tox that exhibited higher transcriptional activity associated with more abundant active histone marks in progenitor-like cells than memory precursor cells. Moreover, thymocyte selection-associated high mobility group box protein TOX (TOX) promoted the persistence of antiviral CD8+ T cells and was required for the programming of progenitor-like CD8+ T cells. Thus, long-term CD8+ T cell immunity to chronic viral infection requires unique transcriptional and epigenetic programs associated with the transcription factor TOX.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Infections/etiology , Single-Cell Analysis , Animals , Biomarkers , Chromatin Immunoprecipitation , Epigenesis, Genetic , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Homeodomain Proteins/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunologic Memory , Infections/metabolism , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Mice , Time Factors , Transcriptome
13.
Immunity ; 55(5): 781-799, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545028

ABSTRACT

Neuroanatomical barriers with physical, chemical, and immunological properties play an essential role in preventing the spread of peripheral infections into the CNS. A failure to contain pathogens within these barriers can result in very serious CNS diseases. CNS barriers are inhabited by an elaborate conglomerate of innate and adaptive immune cells that are highly responsive to environmental challenges. The CNS and its barriers can also be protected by memory T and B cells elicited by prior infection or vaccination. Here, we discuss the different CNS barriers from a developmental, anatomical, and immunological standpoint and summarize our current understanding of how memory cells protect the CNS compartment. We then discuss a contemporary challenge to CNS-barrier system (SARS-CoV-2 infection) and highlight approaches to promote immunological protection of the CNS via vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , B-Lymphocytes , Humans , Vaccination
14.
Immunity ; 55(11): 2103-2117.e10, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36323311

ABSTRACT

The surface of the central nervous system (CNS) is protected by the meninges, which contain a dense network of meningeal macrophages (MMs). Here, we examined the role of tissue-resident MM in viral infection. MHC-II- MM were abundant neonatally, whereas MHC-II+ MM appeared over time. These barrier macrophages differentially responded to in vivo peripheral challenges such as LPS, SARS-CoV-2, and lymphocytic choriomeningitis virus (LCMV). Peripheral LCMV infection, which was asymptomatic, led to a transient infection and activation of the meninges. Mice lacking macrophages but conserving brain microglia, or mice bearing macrophage-specific deletion of Stat1 or Ifnar, exhibited extensive viral spread into the CNS. Transcranial pharmacological depletion strategies targeting MM locally resulted in several areas of the meninges becoming infected and fatal meningitis. Low numbers of MHC-II+ MM, which is seen upon LPS challenge or in neonates, corelated with higher viral load upon infection. Thus, MMs protect against viral infection and may present targets for therapeutic manipulation.


Subject(s)
COVID-19 , Lymphocytic Choriomeningitis , Animals , Mice , Lipopolysaccharides , Mice, Inbred C57BL , SARS-CoV-2 , Lymphocytic choriomeningitis virus/physiology , Macrophages , Meninges
15.
Nat Immunol ; 19(5): 442-452, 2018 05.
Article in English | MEDLINE | ID: mdl-29662169

ABSTRACT

Mild traumatic brain injury (mTBI) can cause meningeal vascular injury and cell death that spreads into the brain parenchyma and triggers local inflammation and recruitment of peripheral immune cells. The factors that dictate meningeal recovery after mTBI are unknown at present. Here we demonstrated that most patients who had experienced mTBI resolved meningeal vascular damage within 2-3 weeks, although injury persisted for months in a subset of patients. To understand the recovery process, we studied a mouse model of mTBI and found extensive meningeal remodeling that was temporally reliant on infiltrating myeloid cells with divergent functions. Inflammatory myelomonocytic cells scavenged dead cells in the lesion core, whereas wound-healing macrophages proliferated along the lesion perimeter and promoted angiogenesis through the clearance of fibrin and production of the matrix metalloproteinase MMP-2. Notably, a secondary injury experienced during the acute inflammatory phase aborted this repair program and enhanced inflammation, but a secondary injury experienced during the wound-healing phase did not. Our findings demonstrate that meningeal vasculature can undergo regeneration after mTBI that is dependent on distinct myeloid cell subsets.


Subject(s)
Blood-Brain Barrier/pathology , Brain Concussion/physiopathology , Meninges/pathology , Myeloid Cells , Neovascularization, Physiologic/physiology , Animals , Female , Humans , Male , Meninges/blood supply , Mice
16.
Nat Immunol ; 19(8): 898, 2018 08.
Article in English | MEDLINE | ID: mdl-29959442

ABSTRACT

In the version of this article initially published, in second paragraph of the second subsection of Results ('Peripheral licensing of CD4+ TH17 cells in Tbx21-/- hosts'), the figure citation ('Fig. 1c') in the sentence that begins "In addition to" was incorrect. The correct citation is 'Fig. 1d'.

17.
Nature ; 628(8008): 612-619, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509366

ABSTRACT

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Subject(s)
Dura Mater , Immunity, Humoral , Lymphoid Tissue , Veins , Administration, Intranasal , Antigens/administration & dosage , Antigens/immunology , Bone Marrow/immunology , Central Nervous System/blood supply , Central Nervous System/immunology , Dura Mater/blood supply , Dura Mater/immunology , Germinal Center/cytology , Germinal Center/immunology , Lymphatic Vessels/immunology , Lymphoid Tissue/blood supply , Lymphoid Tissue/immunology , Plasma Cells/immunology , Skull/blood supply , T-Lymphocytes/immunology , Veins/physiology , Humans , Male , Female , Adult , Middle Aged , Animals , Mice , Aged, 80 and over
18.
Nat Immunol ; 18(10): 1117-1127, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28805812

ABSTRACT

The transcription factor T-bet has been associated with increased susceptibility to systemic and organ-specific autoimmunity, but the mechanism by which T-bet expression promotes neuroinflammation remains unknown. In this study, we demonstrate a cardinal role of T-bet-dependent NKp46+ innate lymphoid cells (ILCs) in the initiation of CD4+ TH17-mediated neuroinflammation. Loss of T-bet specifically in NKp46+ ILCs profoundly impaired the ability of myelin-reactive TH17 cells to invade central nervous system (CNS) tissue and protected the mice from autoimmunity. T-bet-dependent NKp46+ ILCs localized in the meninges and acted as chief coordinators of meningeal inflammation by inducing the expression of proinflammatory cytokines, chemokines and matrix metalloproteinases, which together facilitated T cell entry into CNS parenchyma. Our findings uncover a detrimental role of T-bet-dependent NKp46+ ILCs in the development of CNS autoimmune disease.


Subject(s)
Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Biomarkers , Cell Movement/genetics , Cell Movement/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression , Immunophenotyping , Mice , Mice, Knockout , Myelin Sheath/immunology , Natural Cytotoxicity Triggering Receptor 1/genetics , T-Box Domain Proteins , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
20.
Immunity ; 50(1): 91-105.e4, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30638736

ABSTRACT

Memory CD4+ T cells mediate long-term immunity, and their generation is a key objective of vaccination strategies. However, the transcriptional circuitry controlling the emergence of memory cells from early CD4+ antigen-responders remains poorly understood. Here, using single-cell RNA-seq to study the transcriptome of virus-specific CD4+ T cells, we identified a gene signature that distinguishes potential memory precursors from effector cells. We found that both that signature and the emergence of memory CD4+ T cells required the transcription factor Thpok. We further demonstrated that Thpok cell-intrinsically protected memory cells from a dysfunctional, effector-like transcriptional program, similar to but distinct from the exhaustion pattern of cells responding to chronic infection. Mechanistically, Thpok- bound genes encoding the transcription factors Blimp1 and Runx3 and acted by antagonizing their expression. Thus, a Thpok-dependent circuitry promotes both memory CD4+ T cells' differentiation and functional fitness, two previously unconnected critical attributes of adaptive immunity.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , T-Lymphocyte Subsets/physiology , Transcription Factors/metabolism , Animals , Antigens, Viral/immunology , Cell Differentiation , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/metabolism , Humans , Immunologic Memory/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/metabolism , Protein Binding , Sequence Analysis, RNA , Single-Cell Analysis , Transcription Factors/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL