Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Environ Sci Technol Lett ; 9(9): 733-738, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36118959

ABSTRACT

We compared the sensitivity of closely related Pacific salmon and steelhead (Oncorhynchus spp.) to untreated urban stormwater runoff across three storm events. Juvenile coho, sockeye, steelhead, and Chinook were exposed for 24 h to untreated urban runoff and then transferred to clean water for 48 h. As anticipated from previous studies, coho were highly susceptible to runoff toxicity, with cumulative mortality rates ranging from 92%-100% across the three storms. By contrast, juvenile sockeye were unaffected (100% survival), and cumulative mortality rates were intermediate for steelhead (4%-42%) and Chinook (0%-13%). Furthermore, coho died rapidly following the onset of stormwater exposure (generally <4 h), whereas mortality in Chinook and steelhead was delayed by 1-2 days. Similar to previous findings for coho, steelhead and Chinook did not recover when transferred to clean water. Lastly, significant mortality occurred in coho even when roadway runoff was diluted by 95% in clean water. Our findings extend the urban runoff mortality syndrome in salmonids and point to a near-term need for sublethal studies in steelhead and Chinook to more precisely understand stormwater risks to threatened species recovery efforts in the western United States.

2.
Environ Pollut ; 255(Pt 2): 113262, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563771

ABSTRACT

Urban stormwater is a major source of chemical pollution to receiving waters. Anthropogenic materials in the built environment can be an important source of chemicals to stormwater runoff. Roofing materials can leach significant amounts of metals, which vary over the life of the roof. We report concentrations of three metals (As, Cu, Zn) leaching into runoff from experimental panels of 14 roofing materials over 4.5 years of weathering. Ten roofing materials leached metals. Several leached >10 ppb during one or more study periods. The most common correlate with metal concentration was panel age, followed by precipitation amount. Extrapolating from these observations, we estimated the loading of metals from each roofing material during the first 10 years following installation. Eight materials were predicted to leach metals above background at the end of the 10 years. In combination with information on the prevalence of different roofing materials in the Puget Sound region of the Pacific Northwest, we estimated the relative amount of metals contributed from roofing materials in this basin. Most arsenic and copper was estimated to be contributed by residential roofing; nearly all arsenic from wood shakes manufactured with copper chromated arsenic, and copper contributed mainly from treated wood shakes followed by copper granule-containing asphalt shingles. Most zinc was estimated to be contributed by commercial roofs, including Zincalume and painted metal roofs. Overall our data shows that roofing materials can be an important long-term source of As, Cu, and Zn to stormwater runoff. Compared with atmospheric deposition, roof materials were a significant source, particularly of As and Cu. To get a complete picture of metals sourced from buildings, there is a need to study whole roof systems, including gutters, downspouts, and HVAC systems, as well as metals contributed from homeowner-applied treatments to their roofs.


Subject(s)
Construction Materials , Environmental Monitoring , Metals/analysis , Arsenic , Copper/analysis , Northwestern United States , Rain , Weather , Wood/chemistry , Zinc/analysis
3.
Chemosphere ; 132: 213-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25576131

ABSTRACT

Green stormwater infrastructure (GSI), or low impact development, encompasses a diverse and expanding portfolio of strategies to reduce the impacts of stormwater runoff on natural systems. Benchmarks for GSI success are usually framed in terms of hydrology and water chemistry, with reduced flow and loadings of toxic chemical contaminants as primary metrics. Despite the central goal of protecting aquatic species abundance and diversity, the effectiveness of GSI treatments in maintaining diverse assemblages of sensitive aquatic taxa has not been widely evaluated. In the present study we characterized the baseline toxicity of untreated urban runoff from a highway in Seattle, WA, across six storm events. For all storms, first flush runoff was toxic to the daphniid Ceriodaphnia dubia, causing up to 100% mortality or impairing reproduction among survivors. We then evaluated whether soil media used in bioretention, a conventional GSI method, could reduce or eliminate toxicity to juvenile coho salmon (Oncorhynchus kisutch) as well as their macroinvertebrate prey, including cultured C. dubia and wild-collected mayfly nymphs (Baetis spp.). Untreated highway runoff was generally lethal to salmon and invertebrates, and this acute mortality was eliminated when the runoff was filtered through soil media in bioretention columns. Soil treatment also protected against sublethal reproductive toxicity in C. dubia. Thus, a relatively inexpensive GSI technology can be highly effective at reversing the acutely lethal and sublethal effects of urban runoff on multiple aquatic species.


Subject(s)
Invertebrates , Oncorhynchus kisutch , Rain , Soil , Water Pollutants/toxicity , Animals , Cities , Food Chain
4.
Sci Total Environ ; 500-501: 173-80, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25217993

ABSTRACT

Urban stormwater contains a complex mixture of contaminants that can be acutely toxic to aquatic biota. Green stormwater infrastructure (GSI) is a set of evolving technologies intended to reduce impacts on natural systems by slowing and filtering runoff. The extent to which GSI methods work as intended is usually assessed in terms of water quantity (hydrology) and quality (chemistry). Biological indicators of GSI effectiveness have received less attention, despite an overarching goal of protecting the health of aquatic species. Here we use the zebrafish (Danio rerio) experimental model to evaluate bioinfiltration as a relatively inexpensive technology for treating runoff from an urban highway with dense motor vehicle traffic. Zebrafish embryos exposed to untreated runoff (48-96h; six storm events) displayed an array of developmental abnormalities, including delayed hatching, reduced growth, pericardial edema, microphthalmia (small eyes), and reduced swim bladder inflation. Three of the six storms were acutely lethal, and sublethal toxicity was evident across all storms, even when stormwater was diluted by as much as 95% in clean water. As anticipated from exposure to cardiotoxic polycyclic aromatic hydrocarbons (PAHs), untreated runoff also caused heart failure, as indicated by circulatory stasis, pericardial edema, and looping defects. Bioretention treatment dramatically improved stormwater quality and reversed nearly all forms of developmental toxicity. The zebrafish model therefore provides a versatile experimental platform for rapidly assessing GSI effectiveness.


Subject(s)
Environmental Monitoring/methods , Soil Pollutants/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Water Movements , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL