Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Molecules ; 29(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257264

ABSTRACT

A green method to synthesize cyclobutane derivatives has been developed over the past three decades in the form of solid-state [2+2] photochemical reactions. These solid-state reactions also play a major role in the structural transformation of hybrid materials. In this regard, crystal engineering has played a major role in designing photoreactive molecular systems. Here, we report three novel binuclear Cd(II) complexes with the molecular formula [Cd2(4spy)4L4], where 4spy = 4-styryl pyridine and L = p-toluate (1); 4-fluorobenzoate (2); and 3-fluorobenzoate (3). Although three different benzoates are used, all three complexes are isostructural, as corroborated through SCXRD experiments. Structural analysis also helped in identifying two potential photoreactions. These are both intra- and intermolecular in nature and are driven by the head-to-head (HH) and head-to-tail (HT) alignment of 4spy linkers within these metal complexes. 1H NMR spectroscopy studies showed evidence of a quantitative head-to-head photoreaction in all these three complexes, and SCXRD analysis of the recrystallization of the photoproducts also provided confirmation. TGA studies of these photoreactive complexes showed an increase in the thermal stability of the complexes due to the solid-state photoreaction. Photoluminescence studies of these complexes have been conducted, showing a blue shift in emission spectra across all three cases after the photoreaction.

2.
Chem Rev ; 121(7): 3751-3891, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33630582

ABSTRACT

Among the recent developments in metal-organic frameworks (MOFs), porous layered coordination polymers (CPs) have garnered attention due to their modular nature and tunable structures. These factors enable a number of properties and applications, including gas and guest sorption, storage and separation of gases and small molecules, catalysis, luminescence, sensing, magnetism, and energy storage and conversion. Among MOFs, two-dimensional (2D) compounds are also known as 2D CPs or 2D MOFs. Since the discovery of graphene in 2004, 2D materials have also been widely studied. Several 2D MOFs are suitable for exfoliation as ultrathin nanosheets similar to graphene and other 2D materials, making these layered structures useful and unique for various technological applications. Furthermore, these layered structures have fascinating topological networks and entanglements. This review provides an overview of different aspects of 2D MOF layered architectures such as topology, interpenetration, structural transformations, properties, and applications.

3.
J Am Chem Soc ; 141(29): 11594-11602, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31298851

ABSTRACT

Coordination polymers show great potential for the tailored design of advanced photonic applications by employing crystal chemistry concepts. One challenge for achieving a rational design of nonlinear optically active MOF materials is deriving fundamental structure-property relations of the interplay between the photonic properties and the spatial arrangements of optically active chromophores within the network. We here investigate two-photon-absorption (TPA)-induced photoluminescence of two new MOFs based on a donor-acceptor tetraphenylphenylenediamine (tPPD) chromophore linker (H4TPBD) and Zn(II) and Cd(II) as metal centers. The TPA efficiencies are controlled by the network topologies, degree of interpenetration, packing densities, and the specific spatial arrangement of the chromophores. The effects can be rationalized within the framework of established excited-state theories of molecular crystals. The results presented here demonstrate the key effect of chromophore orientation on the nonlinear optical properties of crystalline network compounds and allow for establishing quantitative design principles for efficient TPA materials.

4.
Chem Soc Rev ; 46(16): 4976-5004, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28621347

ABSTRACT

The building block modular approach that lies behind coordination polymers (CPs) and metal-organic frameworks (MOFs) results not only in a plethora of materials that can be obtained but also in a vast array of material properties that could be aimed at. Optical properties appear to be particularly predetermined by the character of individual structural units and by the intricate interplay between them. Indeed, the "design principles" shaping the optical properties of these materials seem to be well explored for luminescence and second-harmonic generation (SHG) phenomena; these have been covered in numerous previous reviews. Herein, we shine light on CPs and MOFs as optical media for state-of-the-art photonic phenomena such as multi-photon absorption, triplet-triplet annihilation (TTA) and stimulated emission. In the first part of this review we focus on the nonlinear optical (NLO) properties of CPs and MOFs, with a closer look at the two-photon absorption property. We discuss the scope of applicability of most commonly used measurement techniques (Z-scan and two-photon excited fluorescence (TPEF)) that can be applied for proper determination of the NLO properties of these materials; in particular, we suggest recommendations for their use, along with a discussion of the best reporting practices of NLO parameters. We also outline design principles, employing both intramolecular and intermolecular strategies, that are necessary for maximizing the NLO response. A review of recent literature on two-, three- and multi-photon absorption in CPs and MOFs is further supplemented with application-oriented processes such as two-photon 3D patterning and data storage. Additionally, we provide an overview of the latest achievements in the field of frequency doubling (SHG) and tripling (third-harmonic generation, THG) in these materials. Apart from nonlinear processes, in the next sections we also target the photonic properties of MOFs that benefit from their porosity, and resulting from this their ability to serve as containers for optically-active molecules. Thus, we survey dye@MOF composites as novel media in which efficient upconversion via triplet energy migration (TEM) occurs as well as materials for stimulated emission and multi-photon pumped lasing. Prospects for producing lasing as an intrinsic property of MOFs has also been discussed. Overall, further development of the optical processes highlighted herein should allow for realization of various photonic, data storage, biomedical and optoelectronic applications.

5.
Angew Chem Int Ed Engl ; 56(46): 14743-14748, 2017 11 13.
Article in English | MEDLINE | ID: mdl-28898510

ABSTRACT

Multi-photon absorption (MPA) is among the most prominent nonlinear optical (NLO) effects and has applications, for example in telecommunications, defense, photonics, and bio-medicines. Established MPA materials include dyes, quantum dots, organometallics and conjugated polymers, most often dispersed in solution. We demonstrate how metal-organic frameworks (MOFs), a novel NLO solid-state materials class, can be designed for exceptionally strong MPA behavior. MOFs consisting of zirconium- and hafnium-oxo-clusters and featuring a chromophore linker based on the tetraphenylethene (TPE) molecule exhibit record high two-photon absorption (2PA) cross-section values, up to 3600 GM. The unique modular building-block principle of MOFs allows enhancing and optimizing their MPA properties in a theory-guided approach by combining tailored charge polarization, conformational strain, three-dimensional arrangement, and alignment of the chromophore linkers in the crystal.

6.
Chemistry ; 21(34): 11948-53, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26150356

ABSTRACT

Two solid-state structural transformations that occur in a stepwise and a controlled manner are described. A combination of desolvation and cycloaddition reactions has been employed to synthesise a 3D coordination polymer (CP) from 1D CP [Cd(bdc)(4-spy)2 (H2 O)]⋅2 H2 O⋅2 DMF (bdc=1,4-benzenedicarboxylate, 4-spy=4-styrylpyridine) presumably via a 2D layered structure, [Cd2 (bdc)2 (4-spy)4 ]. In the absence of single crystals to follow the course of the photocycloaddition reaction, thermogravimetry, XAFS and NOESY NMR experiments were used to propose the formation of layered and pillared layered structures. Further, the present strategy enables us to synthesise new multidimensional architectures that are otherwise inaccessible by the self-assembly process.

7.
Angew Chem Int Ed Engl ; 54(25): 7313-7, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25951318

ABSTRACT

Getting suitable crystals for single-crystal X-ray crystallographic analysis still remains an art. Obtaining single crystals of metal-organic frameworks (MOFs) containing organic polymers poses even greater challenges. Here we demonstrate the formation of a syndiotactic organic polymer ligand inside a MOF by quantitative [2+2] photopolymerization reaction in a single-crystal-to-single-crystal manner. The spacer ligands with trans,trans,trans-conformation in the pillared-layer MOF with guest water molecules in the channels, undergo pedal motion to trans,cis,trans-conformation prior to [2+2] photo-cycloaddition reaction and yield single crystals of MOF containing two-dimensional coordination polymers fused with the organic polymer ligands. We also show that the organic polymer in the single crystals can be depolymerized reversibly by cleaving the cyclobutane rings upon heating. These MOFs also show interesting photoluminescent properties and sensing of small organic molecules.

8.
Chemistry ; 20(5): 1231-6, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24382684

ABSTRACT

The synthesis of three 2D interdigitated Zn(II) coordination polymers (CPs), by using three monotopic ligands containing C=C bonds, is reported. Among these, two CPs with 4spy (4-styryl pyridine) and 2F-4spy (a 2'-fluoro derivative of 4spy) ligands showed quantitative formation of cyclobutane rings, thus demonstrating a unique synthetic procedure to synthesize metal-organic frameworks (MOFs) by using this photochemical reaction. Interestingly, these compounds can also be synthesized by mechanochemical grinding procedures by using Zn(OAc)2. In contrast, Zn(NO3)2 did not yield the required product, unlike in the solution route. In addition, compounds with 4vpy (4-vinylpyridine), 4spy and 2F-4spy ligands created different units in the CPs; 4vpy and 2F-4spy furnished paddle wheel units, whereas 4spy yielded tetrahedral Zn(II) repeating units. Furthermore, the change in coordination geometry manifests in the photoluminescence properties, attributed to the difference in charge-transfer and ligand-centered fluorescent phenomenon.

9.
Angew Chem Int Ed Engl ; 53(23): 5907-11, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24664890

ABSTRACT

The extremely rare examples of dynamic single crystals where excitation by light or heat induces macroscopic motility present not only a visually appealing demonstration of the utility of molecular materials for conversion of energy to work, but they also provide a unique opportunity to explore the mechanistic link between collective molecular processes and their consequences at a macroscopic level. Here, we report the first example of a photosalient effect (photoinduced leaping) observed with crystals of three coordination complexes which is induced by a [2+2] photocycloaddition reaction. Unlike a plethora of other dimerization reactions, when exposed to even weak UV light, single crystals of these materials burst violently, whereby they are propelled to travel several millimeters. The results point to a multistep mechanism where the strain energy that has been accumulated during the dimerization triggers a rapid structure transformation which ultimately results in crystal disintegration.

10.
Angew Chem Int Ed Engl ; 53(22): 5591-5, 2014 May 26.
Article in English | MEDLINE | ID: mdl-24729582

ABSTRACT

Distortional isomers, or bond-stretch isomers, differ only in the length of one or more bonds, which is due to crystallographic disorder in most cases. The term distortional isomerism is introduced to describe the structures of polyrotaxane 2D coordination polymers (CPs) that differ only by the relative positions in the neighboring entangled axles. A large ring and a long spacer ligand in 2D CPs yielded four different supramolecular isomers, of which two have an entangled polyrotaxane structure. One pair of C=C bonds in the spacer ligand is well-aligned in one isomer and undergoes [2+2] cycloaddition reaction, whereas the other isomer is photoinert. They also have different sensing efficiency for several aromatic nitro compounds. However, both isomers show selective PL quenching for the Brady's reagent. Structurally similar supramolecular isomers with different photochemical reactivity and sensing abilities appear to be unprecedented.

11.
Inorg Chem ; 52(6): 2951-7, 2013 Mar 18.
Article in English | MEDLINE | ID: mdl-23452045

ABSTRACT

Three novel soft porous coordination polymer (PCP) or metal-organic framework (MOF) compounds have been synthesized with a new rigid ligand N-(4-pyridyl)-1,4,5,8-naphathalenetetracarboxymonoimide (PNMI) by partial hydrolysis of N,N'-di-(4-pyridyl)-1,4,5,8-naphthalenete-tracarboxydiimide (DPNI) during solvothermal reactions with Zn(II), Cd(II), and Mn(II) salts, and they are [Zn(PNMI)]·2DMA (1·2DMA, 1a), [Cd(PNMI)]·0.5DMA·5H2O (2·0.5DMA·5H2O), and [Mn(PNMI)]·0.75DMF (3·0.75DMF). The structure of 1 is based on paddle-wheel secondary building unit (SBU) with a 3,6-connected rtl net topology, whereas 2 and 3 are isotypical but the M(O2C-C)2 fragments aggregate in one-dimension and the overall connectivity is the same rtl net topology. All these three MOFs have one-dimensional rhombic channels filled with guest molecules. The guest molecules in 1a can be exchanged with EtOH in a single-crystal to single-crystal (SCSC) manner to 1·1.25EtOH·0.375H2O (1b). Further, the guest molecules in 1b can be replaced with ethylene glycol, triethylene glycol and allyl alcohol without destroying its single crystal nature. These guest exchanges are accompanied by reduction in volume of the unit cell up to 16%, as well as the void volume up to 33.1%. Similarly, triethylene glycol (TEGly) selectively exchanges EtOH in a mixture of the above solvents, which might be the result of correct fit of the hydrogen-bonded TEGly dimer in the channel of 1. While activated 1 and 3 exhibit no uptake of N2 and H2 at 1 bar and 77 K and very low uptake of CO2 gas at 1 bar and 196 K, activated 2 shows selective CO2 uptake, 278 cm(2)·g(-1), over N2 and H2 at 1 bar and 196 K, which corresponds to 5.87 molecules of CO2 per formula unit of 2.

12.
Chem Commun (Camb) ; 59(29): 4384-4387, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36946868

ABSTRACT

Single crystals of coordination complexes that show mechanical motion under the influence of external stimuli are of great interest due to their applications in photoactuators, sensors and probes. The solid-state [2+2] cycloaddition reaction has been one of the most prominent chemical reactions for photoresponsive materials in recent years. However, a relatively limited number of compounds have been reported, and most of these compounds have only shown destructive photosalient effects. Here, we report two photoreactive Zn(II) metal complexes with a thiophene-based photoreactive linker, 2tpy (4-(2-(thiophen-2-yl)vinyl)pyridine). In addition, under photoirradiation these complexes showed flagella-like bending, first towards and subsequently away from the excitation light source. This is the first report of metal-complexes and the solid-state [2+2] cycloaddition reaction that presents flagella-like motion in single crystals.

13.
Nanomaterials (Basel) ; 13(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630906

ABSTRACT

Solid-state structural transformation is an interesting methodology used to prepare various metal-organic frameworks (MOFs) that are challenging to prepare in direct synthetic procedures. On the other hand, solid-state [2 + 2] photoreactions are distinctive methodologies used for light-driven solid-state transformations. Meanwhile, most of these photoreactions explored are quantitative in nature, in addition to them being stereo-selective and regio-specific in manner. In this work, we successfully synthesized two photoreactive novel binuclear Zn(II) MOFs, [Zn2(spy)2(tdc)2] (1) and [Zn2(spy)4(tdc)2] (2) (where spy = 4-styrylpyridine and tdc = 2,5-thiophenedicarboxylate) with different secondary building units. Both MOFs are interdigitated in nature and are 2D and 1D frameworks, respectively. Both the compounds showed 100% and 50% photoreaction upon UV irradiation, as estimated from the structural analysis for 1 and 2, respectively. This light-driven transformation resulted in the formation of 3D, [Zn2(rctt-ppcb)(tdc)2] (3), and 2D, [Zn2(spy)2(rctt-ppcb)(tdc)2] (4) (where rctt = regio, cis, trans, trans; ppcb = 1,3-bis(4'-pyridyl)-2,4-bis(phenyl)cyclobutane), respectively. These solid-state structural transformations were observed as an interesting post-synthetic modification. Overall, we successfully transformed novel lower-dimensional frameworks into higher-dimensional materials using a solid-state [2 + 2] photocycloaddition reaction.

14.
Commun Chem ; 6(1): 150, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452109

ABSTRACT

Dynamic photoactuating crystals have become a sensation due to their potential applications in developing smart medical devices, molecular machines, artificial muscles, flexible electronics actuators, probes and microrobots. Here we report the synthesis of two iso-structural metal-organic crystals, [Zn(4-ohbz)2(4-nvp)2] (1) and [Cd(4-ohbz)2(4-nvp)2] (2) {H4-ohbz = 4-hydroxy benzoic acid; 4-nvp = 4-(1-naphthylvinyl)pyridine} which undergo topochemical [2 + 2] cycloaddition under UV irradiation as well as sunlight to generate a dimerized product of discrete metal-complex [Zn(4-ohbz)2(rctt-4-pncb)] {rctt-4-pncb = 1,3-bis(4'-pyridyl)-2,4-bis(naphthyl)cyclobutane} (1') and one-dimensional coordination polymer (1D CP) [Cd(4-ohbz)2(rctt-4-pncb)] (2') respectively, in a single-crystal-to-single-crystal (SCSC) process. The Zn-based compound demonstrates photosalient behaviour, wherein crystals show jumping, splitting, rolling, and swelling upon UV irradiation. However, the Cd-based crystals do not show such behaviour maintaining the initial supramolecular packing and space group. Thus the photomechanical behaviour can be induced by choosing a suitable metal ion. The above findings are thoroughly validated by quantitative density functional theory (DFT) calculations which show that the Zn-based crystal shifts towards an orthorhombic structure to resolve the anisotropic UV-induced mechanical strain. Furthermore, the mechano-structure-property relationship has been established by complimentary nanoindentation measurements, which are in-line with the DFT-predicted single crystal values.

15.
Dalton Trans ; 52(47): 17934-17941, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37982190

ABSTRACT

A photoactive two-dimensional coordination polymer (2D CP) [Zn2(4-spy)2(bdc)2]n (1) [4-spy = 4-styrylpyridine and H2bdc = 1,4-benzendicarboxylic acid] undergoes a photochemical [2 + 2] cycloaddition reaction upon UV irradiation. Interestingly, the crystals of 1 show different photomechanical effects, such as jumping, swelling, and splitting, during UV irradiation. In addition, the CP was employed for conductivity measurements before and after UV irradiation via current density-voltage characteristics and impedance spectroscopy, which suggest that they are semiconducting in nature and can be used as Schottky diodes. Thus, this work demonstrates the potential dual applications of a 2D CP based on photosalient and conductivity properties.

16.
Chem Commun (Camb) ; 58(86): 12102-12105, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36222409

ABSTRACT

A Zn(II) based one-dimensional (1D) coordination polymer (CP), [Zn(cis-1,4-chdc)(4-nvp)] (1) {cis-1,4-H2chdc = cis-1,4-cyclohexanedicarboxylic acid and 4-nvp = 4-(1-naphthylvinyl)pyridine}, undergoes a solid-state photochemical [2+2] cycloaddition reaction, accompanied by mechanical motion, wherein crystals show swelling, jumping, splitting and bursting upon UV irradiation, whereas the analogous Cd(II) CP [Cd(cis-1,4-chdc)(4-nvp)] (2) does not show any such response under UV light, although it undergoes [2+2] photodimerization. The present study can certainly provide the fundamental understanding for designing smart photoactuating materials.

17.
Chem Asian J ; 16(19): 2806-2816, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34355513

ABSTRACT

Some special crystals respond to light by jumping, scattering or bursting just like popping of popcorn kernels on a hot surface. This rare phenomenon is called the photosalient (PS) effect. Molecular level control over the arrangement of light-responsive molecules in microscopic crystals for macroscale deformation or mechanical motion offers the possibility of using light to control smart material structures across the length scales. Photochemical [2+2] cycloaddition has recently emerged as a promising route to obtain photoswitchable structures and a wide variety of frameworks, but such reaction in crystals leading to macroscopic mechanical motion is relatively less explored. Study of chemistry of such novel soft crystals for the generation of smart materials is an imperative task. This minireview highlights recent advances in solid-state [2+2] cycloaddition in crystals to induce macroscale mechanical motion and thereby transduction of light into kinetic energy.

18.
IUCrJ ; 7(Pt 1): 83-89, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31949907

ABSTRACT

Although a plethora of metal complexes have been characterized, those having multifunctional properties are very rare. This article reports three isotypical complexes, namely [Cu(benzoate)L 2], where L = 4-styryl-pyridine (4spy) (1), 2'-fluoro-4-styryl-pyridine (2F-4spy) (2) and 3'-fluoro-4-styryl-pyridine (3F-4spy) (3), which show photosalient behavior (photoinduced crystal mobility) while they undergo [2+2] cyclo-addition. These crystals also exhibit anisotropic thermal expansion when heated from room temperature to 200°C. The overall thermal expansion of the crystals is impressive, with the largest volumetric thermal expansion coefficients for 1, 2 and 3 of 241.8, 233.1 and 285.7 × 10-6 K-1, respectively, values that are comparable to only a handful of other reported materials known to undergo colossal thermal expansion. As a result of the expansion, their single crystals occasionally move by rolling. Altogether, these materials exhibit unusual and hitherto untapped solid-state properties.

19.
Dalton Trans ; 47(40): 14179-14183, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-29770823

ABSTRACT

Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.

20.
Anticancer Agents Med Chem ; 17(1): 67-74, 2017.
Article in English | MEDLINE | ID: mdl-27141880

ABSTRACT

BACKGROUND: Angiogenesis is physiological process in embryogenesis, organ development, endometrial vasculature in menstrual cycle and wound healing. Angiogenesis has also been associated with several pathological conditions such as cancer, arthritis, atherosclerosis, etc. Out of the many growth factor responsible for angiogenesis, vascular endothelial growth factor (VEGF) is one of the most important and positive regulator of angiogenesis with its distinct specificity for vascular endothelial cells. The current work is the small efforts towards development of newer inhibitor of angiogenesis targeting VEGFR-2. OBJECTIVE: With the view to develop inhibitors of angiogenesis, pharmacophore characteristics were used to design aromatic/ heteroaromatic ring containing compounds. These compounds were then docked in to the active side of VEGFR-2 with the aid of docking. They were then synthesize and spectrally characterized and carry out in-vitro and in-vivo anti-angiogenic evaluation studies to ascertain its angiogenesis inhibition potential. RESULT: 3-substituted-5-(4-pyridin-4yl)-1,3,4-oxadiazole-2-thiones designed as inhibitors of angiogenesis targeting VEGFR2. In docking study, all the molecules showed similar way of binding with VEGFR2 as that of the cocrystallised ligand. Compound 3i and 3j were found to be most active in the series showing good inhibition of angiogenesis in both CAM and in zebrafish embryo assays. The compound 3i was the most active in the series with IC50 of 0.5 µM for VEGR-2. CONCLUSION: To conclude the work we have successfully designed newer inhibitors of angiogenesis targeting VEGFR- 2. These compounds were then screen and found to inhibit angiogenesis of CAM and zebrafish at dose of 1 µM.


Subject(s)
Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Animals , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Drug Design , Humans , Molecular Docking Simulation , Oxadiazoles/chemical synthesis , Thiones/chemical synthesis , Thiones/chemistry , Thiones/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL