Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Psychophysiology ; : e14706, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39380311

ABSTRACT

Evidence suggests that trait anxiety relates to cognitive processing and behavior. However, the relationships between trait anxiety and sensory processing, goal-directed performance and sensorimotor function are unclear, particularly in a multimodal context. This study used electroencephalography to evaluate whether trait anxiety influenced visual and tactile event-related potentials (ERPs), as well as behavioral distractor cost, in a bimodal sensorimotor task. Twenty-nine healthy young adults completed the State-Trait Anxiety Inventory. Participants were directed to focus on either tactile or visual stimuli while disregarding the other modality, responding to target stimulus amplitude with a proportional grip. Previous research suggests that somatosensory N70 and visual P2 ERPs serve as markers of attentional relevance, with attention also impacting the visual P3 ERP. It was hypothesized that trait anxiety would modulate the ERPs susceptible to attentional modulation (tactile N70, visual P2 and P3) and not affect behavioral performance. Trait anxiety showed a large, significant interaction with attention for visual P3 latency in response to unimodal visual stimuli, with a positive relationship between P3 latencies and trait anxiety when attending toward the stimulus and negative when attending away. A large, positive main effect of trait anxiety on visual N1 amplitude for bimodal stimuli was also detected. As predicted, trait anxiety related to ERPs but not behavioral distractor cost. These findings suggest that trait anxiety modulates visual but not somatosensory processing correlates based on attention. The absence of overt behavioral performance effects suggests compensatory mechanisms may offset underlying differences in sensory processing.

2.
Child Care Health Dev ; 46(5): 599-606, 2020 09.
Article in English | MEDLINE | ID: mdl-32557838

ABSTRACT

BACKGROUND: Interventions are needed to teach fundamental motor skills (FMS) to preschoolers. There is a need to design more practical and effective interventions that can be successfully implemented by non-motor experts and fit within the existing gross motor opportunities such as outdoor free play at the preschool. The purpose of this study was to evaluate the feasibility and efficacy of a non-motor expert FMS intervention that was implemented during outdoor free play, Motor skills At Playtime (MAP). METHODS: Participants were preschoolers from two Head Start centres (N = 46; Mage = 4.7 ± 0.46 years; 41% boys) and were divided into a MAP (n = 30) or control (outdoor free play; n = 16) group. Children completed either a 1,350-min MAP intervention or control condition (outdoor free play) from January to April of 2018. FMS were assessed before and after each programme using both the Test of Gross Motor Development-3rd Edition and skill outcome measures (running speed, hopping speed, jump distance, throwing speed, kicking speed and catching percentage). Intervention implementation feasibility was measured through daily fidelity checks. Fidelity was evaluated as the percentage of intervention sessions that included all explicit intervention criteria. FMS data were analysed using linear mixed modelling. Models were fit with fixed effects of time and treatment, covariates of sex and height, and a random intercept for each individual. RESULTS: The non-motor expert was feasibly able to implement MAP with high fidelity (>93%). There was a significant treatment effect for MAP on process and product locomotor FMS (P < 0.05) and a trend for a treatment effect for MAP on total process FMS (P = 0.07). CONCLUSION: Results support that MAP was successfully implemented by a non-motor expert and led to improvements in children's FMS, especially locomotor FMS.


Subject(s)
Child Development/physiology , Motor Skills/physiology , Physical Education and Training , Play and Playthings , Age Factors , Child, Preschool , Feasibility Studies , Female , Humans , Male , Motor Activity
3.
Eur J Neurosci ; 48(10): 3117-3125, 2018 11.
Article in English | MEDLINE | ID: mdl-30218611

ABSTRACT

Verbal instruction and strategies informed by declarative memory are key to performance and acquisition of skilled actions. We previously demonstrated that anatomically distinct sensory-motor inputs converging on the corticospinal neurons of motor cortex are differentially sensitive to visual attention load. However, how loading of working memory shapes afferent input to motor cortex is unknown. This study used short-latency afferent inhibition (SAI) to probe the effect of verbal working memory upon anatomically distinct afferent circuits converging on corticospinal neurons in the motor cortex. SAI was elicited by preceding a suprathreshold transcranial magnetic stimulus (TMS) with electrical stimulation of the median nerve at the wrist while participants mentally rehearsed a two- or six-digit numeric memory set. To isolate different afferent intracortical circuits in motor cortex SAI was elicited, using TMS involving posterior-anterior (PA) or anterior-posterior (AP) monophasic current. Both PA and AP SAI were significantly reduced during maintenance of the six-digit compared to two-digit memory set. The generalized effect of working memory across anatomically distinct circuits converging upon corticospinal neurons in motor cortex is in contrast to the specific sensitivity of AP SAI to increased attention load. The common response across the PA and AP SAI circuits to increased working memory load may reflect an indiscriminate perisomatic mechanism involved in the voluntary facilitation of desired and/or suppression of unwanted actions during action selection or response conflict.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Memory, Short-Term/physiology , Motor Cortex/physiology , Neural Inhibition/physiology , Transcranial Magnetic Stimulation , Adult , Afferent Pathways/physiology , Electric Stimulation , Female , Humans , Male , Median Nerve/physiology , Pyramidal Tracts/physiology , Young Adult
4.
Clin J Sport Med ; 28(2): 130-138, 2018 03.
Article in English | MEDLINE | ID: mdl-28727640

ABSTRACT

OBJECTIVE: To evaluate neuroelectric and cognitive function relative to a season of football participation. Cognitive and neuroelectric function declines are hypothesized to be present in football athletes. DESIGN: Observational. SETTING: Athletic fields and research laboratory. PATIENTS (OR PARTICIPANTS): Seventy-seven high school athletes (15.9 + 0.9 years, 178.6 + 7.2 cm, 74.4 + 14.7 kg, and 0.8 + 0.8 self-reported concussions) participating in football (n = 46) and noncontact sports (n = 31). INTERVENTIONS (OR ASSESSMENT OF RISK FACTORS): All athletes completed preseason, midseason, and postseason assessments of cognitive and neuroelectric function, self-reported symptoms, and quality of life. All athletes participated in their respective sports without intervention, while head impact exposure in football athletes was tracked using the Head Impact Telemetry System. MAIN OUTCOME MEASURES: Cognitive performance was based on Cogstate computerized cognitive assessment tool processing speed, attention, learning, working memory speed, and working memory accuracy scores. ElMindA brain network activation amplitude, synchronization, timing and connectivity brain network activation scores demarcated neuroelectric performance. Quality of life was assessed on the Health Behavior Inventory and Satisfaction with Life Scale and symptoms on the SCAT3 inventory. RESULTS: Football and control sport athletes did not show declines in cognitive or neuroelectric function, quality-of-life measures, or symptom reports across a season of sport participation. CONCLUSIONS: These findings refute the notion that routine football participation places athletes at risk for acute cognitive declines. The lack of impairment may be associated with no association with head impacts and cognitive function, increased physical activity offsetting any declines, and/or test sensitivity. How these findings are associated with long-term cognitive function is unknown.


Subject(s)
Athletes , Cognition , Football , Adolescent , Attention , Electroencephalography , Head , Humans , Learning , Male , Memory, Short-Term , Neuropsychological Tests , Quality of Life
5.
Cogn Affect Behav Neurosci ; 16(4): 724-35, 2016 08.
Article in English | MEDLINE | ID: mdl-27098772

ABSTRACT

Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants' confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function.


Subject(s)
Frontal Lobe/physiology , Functional Laterality/physiology , Recognition, Psychology/physiology , Theta Rhythm/physiology , Adolescent , Adult , Analysis of Variance , Decision Making/physiology , Electroencephalography , Evoked Potentials, Motor/physiology , Female , Humans , Male , Neuropsychological Tests , Reaction Time/physiology , Semantics , Time Factors , Transcranial Magnetic Stimulation/methods , Young Adult
6.
Dev Psychobiol ; 58(6): 773-83, 2016 09.
Article in English | MEDLINE | ID: mdl-27096281

ABSTRACT

Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition.


Subject(s)
Child Development/physiology , Goals , Motor Activity/physiology , Motor Cortex/physiology , Motor Skills/physiology , Spectroscopy, Near-Infrared/methods , Female , Humans , Infant , Male
7.
Biophys J ; 107(11): 2604-11, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25468339

ABSTRACT

It has been shown that cellular migration, persistence, and associated cytoskeletal arrangement are highly dependent on substrate stiffness (modulus: N/m(2) and independent of geometry), but little is known on how cells respond to subtle changes in local geometry and structural stiffness (N/m). Here, using fibers of varying diameter (400, 700, and 1200 nm) and length (1 and 2 mm) deposited over hollow substrates, we demonstrate that single mouse C2C12 cells attached to single suspended fibers form spindle morphologies that are sensitive to fiber mechanical properties. Over a wide range of increasing structural stiffness (2 to 100+ mN/m), cells exhibited decreases in migration speed and average nucleus shape index of ∼57% (from 58 to 25 µm/h) and ∼26% (from 0.78 to 0.58), respectively, whereas the average paxillin focal-adhesion-cluster (FAC, formed at poles) length increased by ∼38% (from 8 to 11 µm). Furthermore, the increase in structural stiffness directly correlates with cellular persistence, with 60% of cells moving in the direction of increasing structural stiffness. At similar average structural stiffness (25 ± 5 mN/m), cells put out longer FAC lengths on smaller diameters, suggesting a conservation of FAC area, and also exhibited higher nucleus shape index and migration speeds on larger-diameter fibers. Interestingly, cells were observed to deform fibers locally or globally through forces applied through the FAC sites and cells undergoing mitosis were found to be attached to the FAC sites by single filamentous tethers. These varied reactions have implications in developmental and disease biology models as they describe a strong dependence of cellular behavior on the cell's immediate mechanistic environment arising from alignment and geometry of fibers.


Subject(s)
Cell Movement , Cell Nucleus Shape , Focal Adhesions/metabolism , Animals , Cell Line , Cytoskeleton/metabolism , Mice
8.
PLoS One ; 19(5): e0302989, 2024.
Article in English | MEDLINE | ID: mdl-38753604

ABSTRACT

Multiple sensorimotor loops converge in the motor cortex to create an adaptable system capable of context-specific sensorimotor control. Afferent inhibition provides a non-invasive tool to investigate the substrates by which procedural and cognitive control processes interact to shape motor corticospinal projections. Varying the transcranial magnetic stimulation properties during afferent inhibition can probe specific sensorimotor circuits that contribute to short- and long-latency periods of inhibition in response to the peripheral stimulation. The current study used short- (SAI) and long-latency (LAI) afferent inhibition to probe the influence of verbal and spatial working memory load on the specific sensorimotor circuits recruited by posterior-anterior (PA) and anterior-posterior (AP) TMS-induced current. Participants completed two sessions where SAI and LAI were assessed during the short-term maintenance of two- or six-item sets of letters (verbal) or stimulus locations (spatial). The only difference between the sessions was the direction of the induced current. PA SAI decreased as the verbal working memory load increased. In contrast, AP SAI was not modulated by verbal working memory load. Visuospatial working memory load did not affect PA or AP SAI. Neither PA LAI nor AP LAI were sensitive to verbal or spatial working memory load. The dissociation of short-latency PA and AP sensorimotor circuits and short- and long-latency PA sensorimotor circuits with increasing verbal working memory load support multiple convergent sensorimotor loops that provide distinct functional information to facilitate context-specific supraspinal control.


Subject(s)
Memory, Short-Term , Motor Cortex , Transcranial Magnetic Stimulation , Humans , Memory, Short-Term/physiology , Motor Cortex/physiology , Male , Female , Adult , Young Adult , Spatial Memory/physiology , Reaction Time/physiology , Evoked Potentials, Motor/physiology
9.
Biomolecules ; 14(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39062450

ABSTRACT

Transcriptomes and proteomes can be normalized with a handful of RNAs or proteins (or their peptides), such as GAPDH, ß-actin, RPBMS, and/or GAP43. Even with hundreds of standards, normalization cannot be achieved across different molecular mass ranges for small molecules, such as lipids and metabolites, due to the non-linearity of mass by charge ratio for even the smallest part of the spectrum. We define the amount (or range of amounts) of metabolites and/or lipids per a defined amount of a protein, consistently identified in all samples of a multiple-model organism comparison, as the normative level of that metabolite or lipid. The defined protein amount (or range) is a normalized value for one cohort of complete samples for which intrasample relative protein quantification is available. For example, the amount of citrate (a metabolite) per µg of aconitate hydratase (normalized protein amount) identified in the proteome is the normative level of citrate with aconitase. We define normativity as the amount of metabolites (or amount range) detected when compared to normalized protein levels. We use axon regeneration as an example to illustrate the need for advanced approaches to the normalization of proteins. Comparison across different pharmacologically induced axon regeneration mouse models entails the comparison of axon regeneration, studied at different time points in several models designed using different agents. For the normalization of the proteins across different pharmacologically induced models, we perform peptide doping (fixed amounts of known peptides) in each sample to normalize the proteome across the samples. We develop Regen V peptides, divided into Regen III (SEB, LLO, CFP) and II (HH4B, A1315), for pre- and post-extraction comparisons, performed with the addition of defined, digested peptides (bovine serum albumin tryptic digest) for protein abundance normalization beyond commercial labeled relative quantification (for example, 18-plex tandem mass tags). We also illustrate the concept of normativity by using this normalization technique on regenerative metabolome/lipidome profiles. As normalized protein amounts are different in different biological states (control versus axon regeneration), normative metabolite or lipid amounts are expected to be different for specific biological states. These concepts and standardization approaches are important for the integration of different datasets across different models of axon regeneration.


Subject(s)
Axons , Nerve Regeneration , Animals , Axons/metabolism , Mice , Proteome/metabolism , Proteomics/methods , Transcriptome , Multiomics
10.
Neurooncol Adv ; 6(1): vdae064, 2024.
Article in English | MEDLINE | ID: mdl-38813113

ABSTRACT

Background: A major hurdle to effectively treating glioblastoma (GBM) patients is the lack of longitudinal information about tumor progression, evolution, and treatment response. Methods: In this study, we report the use of a neural tract-inspired conduit containing aligned polymeric nanofibers (i.e., an aligned nanofiber device) to enable on-demand access to GBM tumors in 2 rodent models. Depending on the experiment, a humanized U87MG xenograft and/or F98-GFP+ syngeneic rat tumor model was chosen to test the safety and functionality of the device in providing continuous sampling access to the tumor and its microenvironment. Results: The aligned nanofiber device was safe and provided a high quantity of quality genomic materials suitable for omics analyses and yielded a sufficient number of live cells for in vitro expansion and screening. Transcriptomic and genomic analyses demonstrated continuity between material extracted from the device and that of the primary, intracortical tumor (in the in vivo model). Conclusions: The results establish the potential of this neural tract-inspired, aligned nanofiber device as an on-demand, safe, and minimally invasive access point, thus enabling rapid, high-throughput, longitudinal assessment of tumor and its microenvironment, ultimately leading to more informed clinical treatment strategies.

11.
Methods Mol Biol ; 2636: 43-53, 2023.
Article in English | MEDLINE | ID: mdl-36881294

ABSTRACT

Retinal ganglion cell (RGC) axon regeneration in mammals can be stimulated through gene knockouts, pharmacological agents, and biophysical stimulation. Here we present a fractionation method to isolate regenerating RGC axons for downstream analysis using immunomagnetic separation of cholera toxin subunit B (CTB)-bound RGC axons. After optic nerve tissue dissection and dissociation, conjugated CTB is used to bind preferentially to regenerated RGC axons. Anti-CTB antibodies crosslinked to magnetic sepharose beads are used to isolate CTB-bound axons from a nonbound fraction of extracellular matrix and neuroglia. We provide a method of verifying fractionation by immunodetection of conjugated CTB and the RGC marker, Tuj1 (ß-tubulin III). These fractions can be further analyzed with lipidomic methods, such as LC-MS/MS to gather fraction-specific enrichments.


Subject(s)
Axons , Nerve Regeneration , Animals , Chromatography, Liquid , Retinal Ganglion Cells , Tandem Mass Spectrometry , Mammals
12.
Methods Mol Biol ; 2571: 157-168, 2023.
Article in English | MEDLINE | ID: mdl-36152160

ABSTRACT

Imaging mass spectrometry (IMS) allows for visualization of the spatial distribution of proteins, lipids, and other metabolites in a targeted or untargeted approach. The identification of compounds through mass spectrometry combined with the mapping of compound distribution in the sample establishes IMS as a powerful tool for metabolomics. IMS analysis for serotonin will allow researchers to pinpoint areas of deficiencies or accumulations associated with ocular disorders such as serotonin selective reuptake inhibitor optic neuropathy. Furthermore, L-DOPA has shown great promise as a therapeutic approach for disorders such as age-related macular degeneration, and IMS allows for localization, and relative magnitudes, of L-DOPA in the eye. We describe here an end-to-end approach of IMS from sample preparation to data analysis for serotonin and L-DOPA analysis.


Subject(s)
Levodopa , Serotonin , Lipids , Metabolomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
13.
Methods Mol Biol ; 2625: 353-364, 2023.
Article in English | MEDLINE | ID: mdl-36653657

ABSTRACT

Membrane order is a biophysical characteristic dependent on cellular lipid makeup. Cells regulate the membrane structure as it affects membrane-bound protein activity levels and membrane stability. Spatial organization of membrane lipids, such as lipid rafts, is a proposed theory that has been indirectly measured through polarity-sensitive fluorescent dyes. C-Laurdan is one such dye that penetrates plasma and internal membranes. C-Laurdan is excited by a single 405 nm photon and emits in two distinct ranges depending on membrane order. Herein, we present a protocol for staining HEK293t cells with C-Laurdan and acquiring ratiometric images using a revised ImageJ macro and confocal microscopy. An example figure is provided depicting the effects of methyl-ß-cyclodextrin, known to remove lipid rafts through cholesterol sequestration, on HEK293t cells. Further image analysis can be performed through region of interest (ROI) selection tools.


Subject(s)
Laurates , Membrane Lipids , Humans , HEK293 Cells , Microscopy, Fluorescence , Membrane Lipids/metabolism , Cell Membrane/metabolism , Microscopy, Confocal , 2-Naphthylamine/analysis , Membrane Proteins/metabolism , Fluorescent Dyes/chemistry
14.
J Ocul Pharmacol Ther ; 39(8): 519-529, 2023 10.
Article in English | MEDLINE | ID: mdl-37192491

ABSTRACT

Purpose: Optic nerve (ON) injury causes irreversible degeneration, leading to vision loss that cannot be restored with available therapeutics. Current therapies slow further degeneration but do not promote regeneration. New regenerative factors have been discovered that are successful in vivo. However, the mechanisms of efficient long-distance regeneration are still unknown. Membrane expansion by lipid insertion is an essential regenerative process, so lipid profiles for regenerating axons can provide insight into growth mechanisms. This article's analysis aims to add to the increasingly available ON regeneration lipid profiles and relate it to membrane order/properties. Methods: In this study, we present an analysis of glycerophospholipids, one of the largest axonal lipid groups, from three mammalian ON regeneration lipid profiles: Wnt3a, Zymosan + CPT-cAMP, and Phosphatase/Tensin homolog knockout (PTENKO) at 7 and 14 days post crush (dpc). Significant lipid classes, species, and ontological properties were crossreferenced between treatments and analyzed using Metaboanalyst 5.0 and Lipid Ontology (LION). Membrane order changes associated with significant lipid classes were evaluated by C-Laurdan dye and exogenous lipids provided to a neuroblastoma cell line. Results and Conclusions: At 7 dpc, ONs show increased lysoglycerophospholipids and decreased phosphatidylethanolamines (PEs)/negative intrinsic curvature lipids. At 14 dpc, regenerative treatments show divergence: Wnt3a displays higher lysoglycerophospholipid content, while Zymosan and PTENKO decrease lysoglycerophospholipids and increase phosphatidylcholine (PC)-related species. Membrane order imaging indicates lysoglycerophospholipids decreases membrane order while PE and PC had no significant membrane order effects. Understanding these changes will allow therapeutic development targeting lipid metabolic pathways that can be used for vision loss treatments.


Subject(s)
Optic Nerve Injuries , Optic Nerve , Animals , Optic Nerve/metabolism , Nerve Regeneration/physiology , Glycerophospholipids/metabolism , Zymosan/metabolism , Lipidomics , Optic Nerve Injuries/metabolism , Mammals
15.
J Vis Exp ; (194)2023 04 21.
Article in English | MEDLINE | ID: mdl-37154553

ABSTRACT

Skilled motor ability depends on efficiently integrating sensory afference into the appropriate motor commands. Afferent inhibition provides a valuable tool to probe the procedural and declarative influence over sensorimotor integration during skilled motor actions. This manuscript describes the methodology and contributions of short-latency afferent inhibition (SAI) for understanding sensorimotor integration. SAI quantifies the effect of a convergent afferent volley on the corticospinal motor output evoked by transcranial magnetic stimulation (TMS). The afferent volley is triggered by the electrical stimulation of a peripheral nerve. The TMS stimulus is delivered to a location over the primary motor cortex that elicits a reliable motor-evoked response in a muscle served by that afferent nerve. The extent of inhibition in the motor-evoked response reflects the magnitude of the afferent volley converging on the motor cortex and involves central GABAergic and cholinergic contributions. The cholinergic involvement in SAI makes SAI a possible marker of declarative-procedural interactions in sensorimotor performance and learning. More recently, studies have begun manipulating the TMS current direction in SAI to tease apart the functional significance of distinct sensorimotor circuits in the primary motor cortex for skilled motor actions. The ability to control additional pulse parameters (e.g., the pulse width) with state-of-the-art controllable pulse parameter TMS (cTMS) has enhanced the selectivity of the sensorimotor circuits probed by the TMS stimulus and provided an opportunity to create more refined models of sensorimotor control and learning. Therefore, the current manuscript focuses on SAI assessment using cTMS. However, the principles outlined here also apply to SAI assessed using conventional fixed pulse width TMS stimulators and other forms of afferent inhibition, such as long-latency afferent inhibition (LAI).


Subject(s)
Learning , Transcranial Magnetic Stimulation , Peripheral Nerves/physiology , Afferent Pathways/physiology , Electric Stimulation/methods , Evoked Potentials, Motor/physiology
16.
Brain Sci ; 13(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38002483

ABSTRACT

Enhancing cerebellar activity influences motor cortical activity and contributes to motor adaptation, though it is unclear which neurophysiological mechanisms contributing to adaptation are influenced by the cerebellum. Pre-movement beta event-related desynchronization (ß-ERD), which reflects a release of inhibitory control in the premotor cortex during movement planning, is one mechanism that may be modulated by the cerebellum through cerebellar-premotor connections. We hypothesized that enhancing cerebellar activity with intermittent theta burst stimulation (iTBS) would improve adaptation rates and increase ß-ERD during motor adaptation. Thirty-four participants were randomly assigned to an active (A-iTBS) or sham cerebellar iTBS (S-iTBS) group. Participants performed a visuomotor task, using a joystick to move a cursor to targets, prior to receiving A-iTBS or S-iTBS, following which they completed training with a 45° rotation to the cursor movement. Behavioural adaptation was assessed using the angular error of the cursor path relative to the ideal trajectory. The results showed a greater adaptation rate following A-iTBS and an increase in ß-ERD, specific to the high ß range (20-30 Hz) during motor planning, compared to S-iTBS, indicative of cerebellar modulation of the motor cortical inhibitory control network. The enhanced release of inhibitory activity persisted throughout training, which suggests that the cerebellar influence over the premotor cortex extends beyond adaptation to other stages of motor learning. The results from this study further understanding of cerebellum-motor connections as they relate to acquiring motor skills and may inform future skill training and rehabilitation protocols.

17.
J Safety Res ; 86: 137-147, 2023 09.
Article in English | MEDLINE | ID: mdl-37718041

ABSTRACT

INTRODUCTION: We analyze and compare the factors that influence the fatality of pedestrian and bicyclist involved crashes in New Jersey using available police-reported crash data between 2016 and 2020. Under three percent of crashes involve non-motorists statewide, but these account for about one third of all traffic fatalities in the state. METHODS: Our analysis is broken down into five parts: we (1) analyze the relationship between minority and low-income communities and non-motorist involved crashes; (2) identify spatial differences between non-motorist involved crashes and non-motorist involved fatal crashes; (3) compare the factors affecting fatal pedestrian crashes in New Jersey and in four counties in southern New Jersey for which we have data on pedestrian infrastructure; (4) compare the factors affecting fatal pedestrian crashes and fatal cyclist crashes in New Jersey; and, (5) discuss priority areas for improving safety. RESULTS: Crashes occur disproportionately more often in low-income communities. Moreover, we find that crashes are less likely to be geocoded if they take place in low-income and minority areas, a concerning finding considering that geocoded crashes are of paramount importance in identifying specific corridors for improvement. Light conditions, non-motorist age, posted speed, and vehicle type are significant factors influencing the fatality of non-motorist involved crashes. The proximity to a crosswalk or sidewalk is associated with decreased risk of a fatal crash for pedestrians. Cyclist crashes in low-income neighborhoods were more likely to be fatal - a finding that we attribute to lower access to bicycle facilities in low-income areas. CONCLUSIONS: We conclude with countermeasures, including a call for better data collection.


Subject(s)
Accidents, Traffic , Pedestrians , Humans , Data Collection , Minority Groups , New Jersey
18.
Methods Mol Biol ; 2625: 149-161, 2023.
Article in English | MEDLINE | ID: mdl-36653641

ABSTRACT

Imaging mass spectrometry (IMS) allows for spatial visualization of proteins, lipids, and metabolite distributions in a tissue. Identifying these compounds through mass spectrometry, combined with mapping the compound distribution in the sample in a targeted or untargeted approach, renders IMS a powerful tool for lipidomics. IMS analysis for lipid species such as phosphatidylcholine and phosphatidylserine allows researchers to pinpoint areas of lipid deficiencies or accumulations associated with ocular disorders such as age-related macular degeneration and diabetic retinopathy. Here, we describe an end-to-end IMS approach from sample preparation to data analysis for phosphatidylcholine and phosphatidylserine analysis.


Subject(s)
Phosphatidylcholines , Phosphatidylserines , Mice , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Lipidomics , Specimen Handling
19.
Data Brief ; 48: 109102, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383800

ABSTRACT

Zebrafish (Danio rerio) have the capacity for successful adult optic nerve regeneration. In contrast, mammals lack this intrinsic ability and undergo irreversible neurodegeneration seen in glaucoma and other optic neuropathies. Optic nerve regeneration is often studied using optic nerve crush, a mechanical neurodegenerative model. Untargeted metabolomic studies within successful regenerative models are deficient. Evaluation of tissue metabolomic changes in active zebrafish optic nerve regeneration can elucidate prioritized metabolite pathways that can be targeted in mammalian systems for therapeutic development. Female and male (6 month to 1 year old wild type) right zebrafish optic nerves were crushed and collected three days after. Contralateral, uninjured optic nerves were collected as controls. The tissue was dissected from euthanized fish and frozen on dry ice. Samples were pooled for each category (female crush, female control, male crush, male control) and pooled at n = 31 to obtain sufficient metabolite concentrations for analysis. Optic nerve regeneration at 3 days post crush was demonstrated by microscope visualization of GFP fluorescence in Tg(gap43:GFP) transgenic fish. Metabolites were extracted using a Precellys Homogenizer and a serial extraction method: (1) 1:1 Methanol/Water and (2) 8:1:1 Acetonitrile/Methanol/Acetone. Metabolites were analyzed by untargeted liquid chromatography-mass spectrometry (LC MS-MS) profiling using a Q-Exactive Orbitrap instrument coupled with Vanquish Horizon Binary UHPLC LC-MS system. Metabolites were identified and quantified using Compound Discoverer 3.3 and isotopic internal metabolites standards.

20.
Methods Mol Biol ; 2625: 1-6, 2023.
Article in English | MEDLINE | ID: mdl-36653628

ABSTRACT

Mitochondria participate in many important metabolic processes in the body. The lipid profile of mitochondria is especially important in membrane regulation and pathway signaling. The isolation and study of these lipids can provide unparalleled information about the mechanisms behind these cellular processes. In this chapter, we describe a protocol to isolate mitochondrial lipids from homogenized murine optic nerves. The lipid extraction was performed using butanol-methanol (BUME) and subsequently analyzed using liquid chromatography-mass spectrometry. Further analysis of the raw data was conducted using LipidSearch™ and MetaboAnalyst 4.0.


Subject(s)
Lipids , Methanol , Mice , Animals , Lipids/chemistry , Mass Spectrometry/methods , Chromatography, Liquid/methods , Methanol/chemistry , Mitochondria/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL