Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Obstet Gynecol ; 221(4): 355.e1-355.e19, 2019 10.
Article in English | MEDLINE | ID: mdl-31336075

ABSTRACT

BACKGROUND: Recently, the US Food and Drug Administration called for cautious use of anesthetic drugs during pregnancy. In 0.2-2% of pregnancies, nonobstetric surgery is being performed. The consequences of anesthesia during pregnancy on fetal development remain unclear, and preclinical studies in relevant animal models may help to elucidate them. OBJECTIVE: To assess the effect of maternal anesthesia and surgery during pregnancy on the developing fetal brain, using a rabbit model. MATERIALS AND METHODS: This is a randomized, sham-controlled study in time-mated pregnant does at 28 days of gestation (term = 31 days), which corresponds to the end of the second trimester in humans. Anesthesia was induced in 14 does (155 pups) with propofol and maintained with 4 vol% (equivalent to 1 minimum alveolar concentration) sevoflurane for 2 hours, and a laparotomy with minimal organ manipulation was performed (surgery group). Maternal vital signs (blood pressure, heart rate, peripheral and cerebral oxygen saturation, temperature, end-tidal CO2, pH, lactate) were continuously monitored. Sham controls consisted of 7 does (74 pups) undergoing invasive hemodynamic monitoring for 2 hours without sedation. At term, does underwent cesarean delivery under ketamine-medetomidine sedation and local anesthesia. Pups either underwent motor and sensory neurologic testing followed by euthanasia at day 1 or daily neurodevelopment testing for 2 weeks and extensive neurologic assessment at 5 and 7 weeks (open field and object recognition test, T-maze, and radial-arm maze). Brains were harvested for histologic assessment of neuron density and synaptophysin expression. RESULTS: Blood gases and vital parameters were stable in both groups. On postnatal day 1, surgery pups had significant lower motor (25 ± 1 vs 23 ± 3; P = .004) and sensory (16 ± 2 vs 15 ± 2; P = .005) neurobehavioral scores and lower brain-to-body weight ratios (3.7% ± 0.6% vs 3.4% ± 0.6%; P = .001). This was accompanied by lower neuron density in multiple brain regions (eg, hippocampus 2617 ± 410 vs 2053 ± 492 neurons/mm2; P = .004) with lower proliferation rates and less synaptophysin expression. Furthermore, surgery pups had delayed motor development during the first week of life, for example with hopping appearing later (6 ± 5 vs 12 ± 3 days; P = .011). Yet, by 7 weeks of age, neurobehavioral impairment was limited to a reduced digging behavior, and no differences in neuron density or synaptophysin expression were seen. CONCLUSION: In rabbits, 2 hours of maternal general anesthesia and laparotomy, with minimal organ and no fetal manipulation, had a measurable impact on neonatal neurologic function and brain morphology. Pups had a slower motoric neurodevelopment, but by 7 weeks the effect became almost undetectable.


Subject(s)
Anesthetics, Inhalation/pharmacology , Anesthetics, Intravenous/pharmacology , Brain/drug effects , Fetal Development , Laparotomy/methods , Neurons/drug effects , Propofol/pharmacology , Sevoflurane/pharmacology , Anesthesia, General/methods , Animals , Blood Gas Analysis , Brain/embryology , Brain/metabolism , Brain/pathology , Cell Count , Female , Models, Animal , Neurons/pathology , Pregnancy , Prenatal Exposure Delayed Effects , Rabbits , Random Allocation , Synaptophysin/metabolism
2.
Paediatr Anaesth ; 27(12): 1210-1219, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28872734

ABSTRACT

BACKGROUND: Xenon has repeatedly been demonstrated to have only minimal hemodynamic side effects when compared to other anesthetics. Moreover, in experimental models, xenon was found to be neuroprotective and devoid of developmental neurotoxicity. These properties could render xenon attractive for the anesthesia in neonates and infants with congenital heart disease. However, experience with xenon anesthesia in children is scarce. AIMS: We hypothesized that in children undergoing cardiac catheterization, general anesthesia with a combination of sevoflurane with xenon results in superior hemodynamic stability, compared to sevoflurane alone. METHODS: In this prospective, randomized, single-blinded, controlled clinical trial, children with a median age of 12 [IQR 3-36] months undergoing diagnostic/interventional cardiac catheterization were randomized to either general anesthesia with 50-65vol% xenon plus sevoflurane or sevoflurane alone. The primary outcome was the incidence of intraprocedural hemodynamic instability, defined as the occurrence of: (i) a heart rate change >20% from baseline; or (ii) a change in mean arterial blood pressure >20% from baseline; or (iii) the requirement of vasopressors, inotropes, chronotropes, or fluid boluses. Secondary endpoints included recovery characteristics, feasibility criteria, and safety (incidence of emergence agitation and postoperative vomiting. RESULTS: After inclusion of 40 children, the trial was stopped as an a priori planned blinded interim analysis revealed that the overall rate of hemodynamic instability did not differ between groups [100% in both the xenon-sevoflurane and the sevoflurane group. However, the adjuvant administration of xenon decreased vasopressor requirements, preserved better cerebral oxygen saturation, and resulted in a faster recovery. Xenon anesthesia was feasible (with no differences in the need for rescue anesthetics in both groups). CONCLUSION: Our observations suggest that combining xenon with sevoflurane in preschool children is safe, feasible, and facilitates hemodynamic management. Larger and adequately powered clinical trials are warranted to investigate the impact of xenon on short- and long-term outcomes in pediatric anesthesia.


Subject(s)
Anesthesia, General , Anesthetics, Inhalation , Cardiac Catheterization/methods , Methyl Ethers , Xenon , Anesthetics, Combined , Blood Pressure/drug effects , Child, Preschool , Female , Heart Defects, Congenital/therapy , Hemodynamics/drug effects , Humans , Infant , Intraoperative Complications/epidemiology , Male , Prospective Studies , Sevoflurane , Single-Blind Method , Treatment Outcome , Vasoconstrictor Agents/administration & dosage
3.
Neurotoxicol Teratol ; 87: 106994, 2021.
Article in English | MEDLINE | ID: mdl-33961970

ABSTRACT

BACKGROUND: There is concern that maternal anesthesia during pregnancy impairs brain development of the human fetus. Xenon is neuroprotective in pre-clinical models of anesthesia-induced neurotoxicity in neonates. It is not known if xenon also protects the developing fetal brain when administered in addition to maternal sevoflurane-anesthesia during pregnancy. OBJECTIVE: To investigate the effects of sevoflurane and xenon on neurobehaviour and neurodevelopment of the offspring in a pregnant rabbit model. METHODS: Pregnant rabbits on post-conception day 28 (term = 31d) underwent two hours of general anesthesia with 1 minimum alveolar concentration (MAC) of sevoflurane in 30% oxygen (n = 17) or 1 MAC sevoflurane plus 50-60 % xenon in 30% oxygen (n = 10) during a standardized laparotomy while receiving physiological monitoring. A sham-group (n = 11) underwent monitoring alone for two hours. At term, the rabbits were delivered by caesarean section. On the first postnatal day, neonatal rabbits underwent neurobehavioral assessment using a validated test battery. Following euthanasia, the brains were harvested for neurohistological analysis. A mixed effects-model was used for statistical analysis. RESULTS: Maternal cardiopulmonary parameters during anesthesia were within the reference range. Fetal survival rates were significantly higher in the sham-group as compared to the sevoflurane-group and the fetal brain/body weight ratio was significantly lower in the sevoflurane-group as compared with the sham- and xenon-group. Pups antenatally exposed to anesthesia had significantly lower motor and sensory neurobehavioral scores when compared to the sham-group (mean ± SD; sevo: 22.70 ± 3.50 vs. sevo+xenon: 22.74 ± 3.15 vs. sham: 24.37 ± 1.59; overall p = 0.003; sevo: 14.98 ± 3.00 vs. sevo+xenon: 14.80 ± 2.83 vs. sham: 16.43 ± 2.63; overall p = 0.006; respectively). Neuron density, neuronal proliferation and synaptic density were reduced in multiple brain regions of the exposed neonates. The co-administration of xenon had no measurable neuroprotective effects in this model. CONCLUSIONS: In rabbits, sevoflurane anesthesia for a standardized laparotomy during pregnancy resulted in impaired neonatal neurobehavior and a decreased neuron count in several regions of the neonatal rabbit brain. Co-administration of xenon did not prevent this effect.


Subject(s)
Brain/drug effects , Neurotoxicity Syndromes/pathology , Sevoflurane/pharmacology , Xenon/pharmacology , Anesthesia, General/adverse effects , Anesthetics, Inhalation/pharmacology , Animals , Female , Laparotomy/adverse effects , Pregnancy , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL