Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Biol Chem ; 288(5): 3500-11, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23239881

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD(+), essential for cellular metabolism, energy production, and DNA repair. NAMPT has been extensively studied because of its critical role in these cellular processes and the prospect of developing therapeutics against the target, yet how it regulates cellular metabolism is not fully understood. In this study we utilized liquid chromatography-mass spectrometry to examine the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and serine biosynthesis in cancer cells and tumor xenografts. We show for the first time that NAMPT inhibition leads to the attenuation of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step due to the reduced availability of NAD(+) for the enzyme. The attenuation of glycolysis results in the accumulation of glycolytic intermediates before and at the glyceraldehyde 3-phosphate dehydrogenase step, promoting carbon overflow into the pentose phosphate pathway as evidenced by the increased intermediate levels. The attenuation of glycolysis also causes decreased glycolytic intermediates after the glyceraldehyde 3-phosphate dehydrogenase step, thereby reducing carbon flow into serine biosynthesis and the TCA cycle. Labeling studies establish that the carbon overflow into the pentose phosphate pathway is mainly through its non-oxidative branch. Together, these studies establish the blockade of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step as the central metabolic basis of NAMPT inhibition responsible for ATP depletion, metabolic perturbation, and subsequent tumor growth inhibition. These studies also suggest that altered metabolite levels in tumors can be used as robust pharmacodynamic markers for evaluating NAMPT inhibitors in the clinic.


Subject(s)
Enzyme Inhibitors/pharmacology , NAD/biosynthesis , Neoplasms/metabolism , Neoplasms/pathology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Acrylamides/pharmacology , Adenosine Triphosphate/deficiency , Adenosine Triphosphate/metabolism , Animals , Carbon Isotopes , Cell Death/drug effects , Cell Line, Tumor , Citric Acid Cycle/drug effects , Female , Glycolysis/drug effects , Humans , Isotope Labeling , Mice , Mice, SCID , Nicotinamide Phosphoribosyltransferase/metabolism , Pentose Phosphate Pathway/drug effects , Piperidines/pharmacology , Serine/biosynthesis , Xenograft Model Antitumor Assays
2.
Sci Rep ; 8(1): 15458, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337562

ABSTRACT

AICARFT is a folate dependent catalytic site within the ATIC gene, part of the purine biosynthetic pathway, a pathway frequently upregulated in cancers. LSN3213128 is a potent (16 nM) anti-folate inhibitor of AICARFT and selective relative to TS, SHMT1, MTHFD1, MTHFD2 and MTHFD2L. Increases in ZMP, accompanied by activation of AMPK and cell growth inhibition, were observed with treatment of LY3213128. These effects on ZMP and proliferation were dependent on folate levels. In human breast MDA-MB-231met2 and lung NCI-H460 cell lines, growth inhibition was rescued by hypoxanthine, but not in the A9 murine cell line which is deficient in purine salvage. In athymic nude mice, LSN3213128 robustly elevates ZMP in MDA-MB-231met2, NCI-H460 and A9 tumors in a time and dose dependent manner. Significant tumor growth inhibition in human breast MDA-MB231met2 and lung NCI-H460 xenografts and in the syngeneic A9 tumor model were observed with oral administration of LSN3213128. Strikingly, AMPK appeared activated within the tumors and did not change even at high levels of intratumoral ZMP after weeks of dosing. These results support the evaluation of LSN3213128 as an antineoplastic agent.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Antineoplastic Agents , Enzyme Inhibitors/pharmacology , Hydroxymethyl and Formyl Transferases/antagonists & inhibitors , Lung Neoplasms , Multienzyme Complexes/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Nucleotide Deaminases/antagonists & inhibitors , Ribonucleotides , Aminoimidazole Carboxamide/pharmacokinetics , Aminoimidazole Carboxamide/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Hydroxymethyl and Formyl Transferases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Nude , Multienzyme Complexes/metabolism , Neoplasm Proteins/metabolism , Nucleotide Deaminases/metabolism , Ribonucleotides/pharmacokinetics , Ribonucleotides/pharmacology , Xenograft Model Antitumor Assays
3.
J Med Chem ; 60(23): 9599-9616, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29072452

ABSTRACT

A hallmark of cancer is unbridled proliferation that can result in increased demand for de novo synthesis of purine and pyrimidine bases required for DNA and RNA biosynthesis. These synthetic pathways are frequently upregulated in cancer and involve various folate-dependent enzymes. Antifolates have a proven record as clinically used oncolytic agents. Our recent research efforts have produced LSN 3213128 (compound 28a), a novel, selective, nonclassical, orally bioavailable antifolate with potent and specific inhibitory activity for aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT), an enzyme in the purine biosynthetic pathway. Inhibition of AICARFT with compound 28a results in dramatic elevation of 5-aminoimidazole 4-carboxamide ribonucleotide (ZMP) and growth inhibition in NCI-H460 and MDA-MB-231met2 cancer cell lines. Treatment with this inhibitor in a murine based xenograft model of triple negative breast cancer (TNBC) resulted in tumor growth inhibition.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/therapeutic use , Phosphoribosylaminoimidazolecarboxamide Formyltransferase/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Breast/drug effects , Breast/metabolism , Breast/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Female , Folic Acid Antagonists/pharmacokinetics , Folic Acid Antagonists/pharmacology , Humans , Male , Mice , Mice, Nude , Models, Molecular , Phosphoribosylaminoimidazolecarboxamide Formyltransferase/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thiophenes/chemistry , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , Thiophenes/therapeutic use , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
4.
Mol Cancer Ther ; 13(6): 1442-56, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24688048

ABSTRACT

DNA-dependent RNA polymerase II (RNAP II) largest subunit RPB1 C-terminal domain (CTD) kinases, including CDK9, are serine/threonine kinases known to regulate transcriptional initiation and elongation by phosphorylating Ser 2, 5, and 7 residues on CTD. Given the reported dysregulation of these kinases in some cancers, we asked whether inhibiting CDK9 may induce stress response and preferentially kill tumor cells. Herein, we describe a potent CDK9 inhibitor, LY2857785, that significantly reduces RNAP II CTD phosphorylation and dramatically decreases MCL1 protein levels to result in apoptosis in a variety of leukemia and solid tumor cell lines. This molecule inhibits the growth of a broad panel of cancer cell lines, and is particularly efficacious in leukemia cells, including orthotopic leukemia preclinical models as well as in ex vivo acute myeloid leukemia and chronic lymphocytic leukemia patient tumor samples. Thus, inhibition of CDK9 may represent an interesting approach as a cancer therapeutic target, especially in hematologic malignancies.


Subject(s)
Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cyclin-Dependent Kinase 9/genetics , Cyclohexylamines/administration & dosage , Indazoles/administration & dosage , Leukemia/drug therapy , Cell Line, Tumor , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Humans , Leukemia/pathology , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Phosphorylation/drug effects , Serine/metabolism
5.
FEBS J ; 275(21): 5258-71, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18795946

ABSTRACT

DNA ligases are the enzymes essential for DNA replication, repair and recombination in all organisms. The bacterial DNA ligases involved in DNA replication require NAD(+) for activity, but eukaryotic and viral DNA ligases require ATP. Because of their essential nature, unique structures and widespread existence in nature, bacterial DNA ligases represent a class of valuable targets for identifying novel and selective antibacterial agents. In this study, we cloned and expressed the ligA gene from Streptococcus pneumoniae, and characterized this ligA-encoded NAD(+)-dependent DNA ligase. We then screened small molecule chemical libraries using a biochemical assay and identified a new small molecule with a structure of 2,4-diamino-7-dimethylamino-pyrimido[4,5-d]pyrimidine. We show that this small molecule is a specific inhibitor of bacterial NAD(+)-dependent DNA ligases. Biochemical studies show that this molecule inhibits NAD(+)-dependent DNA ligases, but not ATP-dependent enzymes. The molecule inhibits NAD(+)-dependent DNA ligases competitively with respect to NAD(+) and specifically inhibits enzyme adenylation, but not DNA adenylation or ligation. Labeling studies establish that this molecule inhibits the incorporation of thymidine into DNA and that overexpression of DNA ligase in the cell abolishes this inhibition. Finally, microbiological studies show that this molecule exhibits a broad spectrum of antibacterial activity. Together, this study shows that this small molecule inhibitor identified is specific to bacterial NAD(+)-dependent DNA ligases, exhibits a broad spectrum of antibacterial activities, and has the potential to be developed into an antibacterial agent.


Subject(s)
Anti-Bacterial Agents/chemistry , DNA Ligases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Streptococcus pneumoniae/enzymology , Bacterial Proteins/antagonists & inhibitors , Base Sequence , DNA Ligases/genetics , DNA Ligases/isolation & purification , Enzyme Inhibitors/chemistry , Humans , Kinetics , Pyrimidines/chemistry , Small Molecule Libraries , Streptococcus pneumoniae/genetics
6.
Bioorg Med Chem Lett ; 15(4): 899-903, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15686883

ABSTRACT

Many 3-aryl-4-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)maleimides exhibit potent GSK3 inhibitory activity (<100 nM IC(50)), although few show significant selectivity (>100x) versus CDK2, CDK4, or PKCbetaII. However, combining 3-(imidazo[1,2-a]pyridin-3-yl), 3-(pyrazolo[1,5-a]pyridin-3-yl) or aza-analogs with a 4-(2-acyl-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)) group on the maleimide resulted in very potent inhibitors of GSK3 (160 to >10,000-fold selectivity versus CDK2/4 and PKCbetaII. These compounds also inhibited tau phosphorylation in cells and were effective in lowering plasma glucose in a rat model of type 2 diabetes (ZDF rat).


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Maleimides/chemical synthesis , Animals , Blood Glucose/drug effects , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Humans , Inhibitory Concentration 50 , Maleimides/pharmacology , Phosphorylation/drug effects , Rats , Structure-Activity Relationship , tau Proteins/metabolism
7.
Microbiology (Reading) ; 146 ( Pt 5): 1071-1083, 2000 May.
Article in English | MEDLINE | ID: mdl-10832634

ABSTRACT

Era, an essential GTPase, appears to play an important role in the regulation of the cell cycle and protein synthesis of bacteria and mycoplasmas. In this study, native Era, His-tagged Era (His-Era) and glutathione S-transferase (GST)-fusion Era (GST-Era) proteins from Escherichia coli were expressed and purified. It was shown that the GST-Era and His-Era proteins purified by 1-step affinity column chromatographic methods were associated with RNA and exhibited a higher GTPase activity. However, the native Era protein purified by a 3-step column chromatographic method had a much lower GTPase activity and was not associated with RNA which had been removed during purification. Purified GST-Era protein was shown to be present as a high- and a low-molecular-mass forms. The high-molecular-mass form of GST-Era was associated with RNA and exhibited a much higher GTPase activity. Removal of the RNA associated with GST-Era resulted in a significant reduction in the GTPase activity. The RNA associated with GST-Era was shown to be primarily 16S rRNA. A purified native Era protein preparation, when mixed with total cellular RNA, was found to bind to some of the RNA. The native Era protein isolated directly from the cells of a wild-type E. coli strain was also present as a high-molecular-mass form complexed with RNA and RNase treatment converted the high-molecular-mass form into a 32 kDa low-molecular-mass form, a monomer of Era. Furthermore, a C-terminally truncated Era protein, when expressed in E. coli, did not bind RNA. Finally, the GTPase activity of the Era protein free of RNA, but not the Era protein associated with the RNA, was stimulated by acetate and 3-phosphoglycerate. These carbohydrates, however, failed to activate the GTPase activity of the C-terminally truncated Era protein. Thus, the results of this study establish that the C-terminus of Era is essential for the RNA-binding activity and that the RNA and carbohydrates modulate the GTPase activity of Era possibly through a similar mechanism.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins , Escherichia coli/metabolism , GTP-Binding Proteins/metabolism , Glutathione Transferase/metabolism , RNA, Ribosomal, 16S/metabolism , RNA-Binding Proteins , Acetates/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Blotting, Western , Carbohydrates/pharmacology , Chromatography, Affinity , Chromatography, Gel , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , Glutathione Transferase/chemistry , Glutathione Transferase/isolation & purification , Glyceric Acids/pharmacology , Molecular Weight , Polymerase Chain Reaction , Protein Binding , RNA, Bacterial/analysis , RNA, Bacterial/metabolism , RNA, Bacterial/pharmacology , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/pharmacology , Recombinant Proteins/metabolism
8.
Microbiology (Reading) ; 145 ( Pt 4): 791-800, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10220158

ABSTRACT

Era, an essential GTPase, is present in many bacteria and Mycoplasma spp. and appears to play a major role in the cell cycle and other cellular processes. To further understand its function, an era gene from Streptococcus pneumoniae was identified and cloned, and a mutant era gene with a deletion of 68 codons from its 3'-terminus was constructed. The truncated Era protein was then purified and characterized, and the ability of the truncated era gene to complement an Escherichia coli mutant strain defective in Era production was examined. Like the full-length Era protein, the truncated Era protein was able to bind and hydrolyse GTP, but its binding activity was increased twofold and its hydrolytic activity was reduced sevenfold when compared with those of the full-length Era protein. Unlike the full-length Era protein, the truncated Era protein lost its ability to bind to the E. coli cytoplasmic membrane. The full-length era gene was able to complement the E. coli mutant deficient in Era production when carried on pACYC184, while the truncated era gene failed to do so when carried on pACYC184, pBR322 or pUC18. The cellular amounts of the truncated Era and the full-length Era proteins in E. coli and S. pneumoniae, respectively, were then determined by Western blot analysis. In addition, the minimal amount of the S. pneumoniae Era protein needed for complementation of the E. coli mutant was also measured. Taken together, these results suggest that the C-terminus of the Era protein might be responsible for the binding of the protein to the cytoplasmic membrane and be essential for function.


Subject(s)
Escherichia coli Proteins , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , RNA-Binding Proteins , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/genetics , Blotting, Western , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/isolation & purification , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/isolation & purification , Genes, Bacterial , Genetic Complementation Test , Guanosine Triphosphate/metabolism , Hydrolysis , Molecular Sequence Data , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Streptococcus pneumoniae/growth & development
9.
Anal Biochem ; 309(2): 232-40, 2002 Oct 15.
Article in English | MEDLINE | ID: mdl-12413456

ABSTRACT

DNA ligase is an enzyme essential for DNA replication, repair, and recombination in all organisms. Bacterial DNA ligases catalyze a NAD(+)-dependent DNA ligation reaction, i.e., the formation of a phosphodiester bond between adjacent 3'-OH and 5'-phosphate termini of dsDNA. Due to their essential nature, unique cofactor requirement, and widespread existence in nature, bacterial DNA ligases appear to be valuable targets for identifying novel antibacterial agents. To explore bacterial DNA ligases as antibacterial targets and further characterize them, we developed a simple, robust, homogeneous time-resolved fluorescence resonance energy transfer assay (TR-FRET) for measuring Streptococcus pneumoniae DNA ligase activity. This assay involves the use of one dsDNA molecule labeled with biotin and another dsDNA molecule labeled with Cy5, an acceptor fluorophore. During ligation reactions, the donor fluorophore europium (Eu(3+)) labeled with streptavidin was added to the assay mixtures, which bound to the biotin label on the ligated products. This in turn resulted in the FRET from Eu(3+) to Cy5 due to their close proximity. The formation of ligation products was measured by monitoring the emission at 665nm. This assay was validated by the experiments showing that the DNA ligase activity required NAD(+) and MgCl(2), and was inhibited by NMN and AMP, products of the ligase reaction. Using this assay, we determined the K(m) values of the enzyme for dsDNA substrates and NAD(+), and the IC(50) values of NMN and AMP, examined the effects of MgCl(2) and PEG(8000) on the enzyme activity, optimized the concentrations of Eu(3+) in the assay, and validated its utilities for high-throughput screening and biochemical characterizations of this class of enzymes.


Subject(s)
DNA Ligases/metabolism , Fluorescence Resonance Energy Transfer/methods , Streptococcus pneumoniae/enzymology , Adenosine Monophosphate/pharmacology , Biotin/chemistry , Carbocyanines/chemistry , DNA/chemistry , DNA/metabolism , DNA Ligases/antagonists & inhibitors , DNA Ligases/chemistry , Electrophoresis, Polyacrylamide Gel , Europium/chemistry , Kinetics , NAD/metabolism , Signal Processing, Computer-Assisted , Streptavidin/chemistry , Streptococcus pneumoniae/genetics
10.
Protein Expr Purif ; 35(2): 218-24, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15135396

ABSTRACT

The Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositides. Although closely related, experimental evidence suggests that the four Class I PI3Ks may be functionally distinct. To further study their unique biochemical properties, the three human Class Ia PI3K (alpha, beta, and delta) p110 catalytic domains were cloned and co-expressed with the p85alpha regulatory domain in Sf9 cells. None of the p110 subunits were successfully expressed in the absence of p85alpha. Successful expression and purification of each p85alpha/p110 protein required using an excess of the p110 vector over the p85 vector during co-infection of Sf9 cells. Proteins were purified as the p85alpha/p110 complex by nickel affinity chromatography through an N-terminal His-tag on the p110 subunit using an imidazole gradient. The purification yields were high using the optimized ratio of p85/p110 vector and small culture volumes, with 24mg/L cell culture media for p85alpha/p110alpha, 17.5mg/L for p85alpha/p110delta, and 3.5mg/L for p85alpha/p110beta. The identity of each purified isoform was confirmed by mass spectral analysis and immunoblotting. The activities of the three p85alpha/p110 proteins and the Class Ib p110gamma catalytic domain were investigated using phosphatidylinositol 4,5-bisphosphate (PIP2) as the substrate in a PIP2/phosphatidylserine (PS) liposome. All four enzymes exhibited reaction velocities that were dependent on the surface concentration of PIP2. The surface concentrations that gave maximal activity for each human isoform with 0.5mM PIP2 were 2.5mol% PIP2 for p110gamma, 7.5mol% for p85alpha/p110beta, and 10mol% PIP2 for p85alpha/p110alpha and p85alpha/p110delta. The specific activity of p85alpha/p110alpha was three to five times higher than that of the other human isoforms. These kinetic differences may contribute to the unique roles of these isoforms in cells.


Subject(s)
Isoenzymes/genetics , Isoenzymes/isolation & purification , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/isolation & purification , Animals , Base Sequence , Cloning, Molecular , DNA Primers , Electrophoresis, Polyacrylamide Gel , Humans , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL