ABSTRACT
BACKGROUND: The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known. OBJECTIVE: Our aim was to determine the mechanisms and cell types governing skin inflammation, barrier dysfunction, and resolution of inflammation in a model of AD. METHODS: Mice that exhibit expression of IL-4, IL-13, and MCPT8 or that could be depleted of basophils or eosinophils, be deficient in IL-4 or MHC class II molecules, or have basophils lacking macrophage colony-stimulating factor (M-CSF) were treated with calcipotriol (MC903) as an acute model of AD. Kinetics of the disease; keratinocyte differentiation; and leukocyte accumulation, phenotype, function, and cytokine production were measured by transepidermal water loss, histopathology, molecular biology, or unbiased analysis of spectral flow cytometry. RESULTS: In this model of AD, basophils were activated systemically and were the initial and main source of IL-4 in the skin. Basophils and IL-4 promoted epidermal hyperplasia and skin barrier dysfunction by acting on keratinocyte differentiation during inflammation. Basophils, IL-4, and basophil-derived M-CSF inhibited the accumulation of proinflammatory cells in the skin while promoting the expansion and function of proresolution M2-like macrophages and the expression of probarrier genes. Basophils kept their proresolution properties during AD resolution. CONCLUSION: Basophils can display both beneficial and detrimental type 2 functions simultaneously during atopic inflammation.
Subject(s)
Basophils/immunology , Dermatitis, Atopic/immunology , Skin/immunology , Animals , Calcitriol/analogs & derivatives , Cell Differentiation , Cytokines/genetics , Cytokines/immunology , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Diphtheria Toxin , Edema/chemically induced , Edema/immunology , Eosinophils/immunology , Female , Gene Expression , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Hyperplasia/immunology , Keratinocytes/cytology , Male , Mice, Inbred C57BL , Mice, Transgenic , Skin/pathologySubject(s)
B-Lymphocytes/immunology , Immune System Diseases/immunology , Immunoglobulin G/metabolism , 3T3 Cells , Adult , Aged , Animals , Antibodies, Monoclonal/metabolism , Antigens, CD/metabolism , Cell Separation , Complement Activation , Female , Flow Cytometry , Humans , Immune Tolerance , Immunoglobulin G/immunology , Immunologic Memory , Male , Mice , Middle Aged , Prospective StudiesABSTRACT
Helminths regulate host immune responses to ensure their own long-term survival. Numerous studies have demonstrated that these helminth-induced regulatory mechanisms can also limit host inflammatory responses in several disease models. We used the Heligmosomoides bakeri (Hb) infection model (also known as H. polygyrus or H. polygyrus bakeri in the literature) to test whether such immune regulation affects skin inflammatory responses induced by the model contact sensitiser dibutyl phthalate fluorescein isothiocynate (DBP-FITC). Skin lysates from DBP-FITC-sensitized, Hb-infected mice produced less neutrophil specific chemokines and had significantly reduced levels of skin thickening and cellular inflammatory responses in tissue and draining lymph nodes (LNs) compared to uninfected mice. Hb-induced suppression did not appear to be mediated by regulatory T cells, nor was it due to impaired dendritic cell (DC) activity. Mice cleared of infection remained unresponsive to DBP-FITC sensitization indicating that suppression was not via the secretion of Hb-derived short-lived regulatory molecules, although long-term effects on cells cannot be ruled out. Importantly, similar helminth-induced suppression of inflammation was also seen in the draining LN after intradermal injection of the ubiquitous allergen house dust mite (HDM). These findings demonstrate that Hb infection attenuates skin inflammatory responses by suppressing chemokine production and recruitment of innate cells. These findings further contribute to the growing body of evidence that helminth infection can modulate inflammatory and allergic responses via a number of mechanisms with potential to be exploited in therapeutic and preventative strategies in the future.
Subject(s)
Dermatitis, Contact/immunology , Gastrointestinal Tract/parasitology , Heligmosomatoidea/immunology , Inflammation/parasitology , Strongylida Infections/immunology , Animals , Chemokines/immunology , Dendritic Cells/immunology , Dermatitis, Contact/parasitology , Dermatitis, Contact/prevention & control , Disease Models, Animal , Female , Inflammation/prevention & control , Mice , Mice, Inbred C57BL , Skin/immunology , Skin/parasitology , Skin/pathologyABSTRACT
In this study, we investigated a large series of immune (escape) markers, relevant to T-cell function, as potential biomarkers for clinical outcome following immunotherapy. We retrospectively studied the expression of immune (escape) markers in metastatic melanoma tissues of 27 patients before autologous tumor cell vaccination, and 16 patients who were intended to treat but were not vaccinated because of rapid disease progression. Immunohistochemical data of infiltrating (suppressive) cells, such as T cells, regulatory T cells, myeloid-derived suppressor cells, and mast cells, or the expression of T-cell inhibitory factors (PD-1/PD-L1, IDO, and galectins), cytotoxic molecules (granzyme-B), melanocyte differentiation antigens, HLA class-I and tolerogenic cytokines [interleukin (IL)-1, IL-6, IL-10, TNF-α, and TGF-ß] were correlated statistically to clinical outcome and overall survival (OS). Significantly more tumor-infiltrating CD4(+) and CD8(+) T cells (both P < 0.05) were found in nonprogressors to vaccination (n = 9; median OS, 56 months), compared with progressors (n = 18; median OS, 9.5 months). Moreover, granzyme-B expression was elevated in the tumors of nonprogressors, suggesting activated cytotoxic T cells or natural killer cells. T-cell infiltration and granzyme-B expression significantly correlated with overall OS. T-cell inhibitory factors and suppressive cells did not correlate with OS, suggesting minor influence of these immune-escape markers on clinical outcome. The data of progressors were comparable with those from patients with rapid progression (not vaccinated; n = 16; median OS, 3 months). Our study shows that high numbers of intratumoral activated CD4(+) or CD8(+) T cells, before autologous tumor cell vaccination, are associated with favorable clinical outcome. Analyses of these markers in the patients' tumor tissues before immunotherapy may therefore be a valuable tool to select patients for whom the treatment may result in potential clinical benefit.