Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Nat Prod ; 81(5): 1203-1208, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29757646

ABSTRACT

Two new bracelet cyclotides from roots of Pombalia calceolaria with potential anticancer activity have been characterized in this work. The cyclotides Poca A and B (1 and 2) and the previously known CyO4 (3) were de novo sequenced by MALDI-TOF/TOF mass spectrometry (MS). The MS2 spectra were examined and the amino acid sequences were determined. The purified peptides were tested for their cytotoxicity and effects on cell migration of MDA-MB-231, a triple-negative breast cancer cell line. The isolated cyclotides reduced the number of cancer cells by more than 80% at 20 µM, and the concentration-related cytotoxic responses were observed with IC50 values of 1.8, 2.7, and 9.8 µM for Poca A (1), Poca B (2), and CyO4 (3), respectively. Additionally, the inhibition of cell migration (wound-healing assay) exhibited that CyO4 (3) presents an interesting activity profile, in being able to inhibit cell migration (50%) at a subtoxic concentration (2 µM). The distribution of these cyclotides in the roots was analyzed by MALDI imaging, demonstrating that all three compounds are present in the phloem and cortical parenchyma regions.


Subject(s)
Breast Neoplasms/drug therapy , Calceolariaceae/chemistry , Cell Movement/drug effects , Cyclotides/chemistry , Cyclotides/pharmacology , Amino Acid Sequence , Cell Line, Tumor , Cytotoxins/chemistry , Cytotoxins/pharmacology , Female , Humans , Plant Roots/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
2.
Chemosphere ; 178: 282-290, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28340455

ABSTRACT

Organic dyes extracted from natural sources have been widely used to develop safety and eco-friendly dyes as an alternative to synthetic ones, since the latter are usually precursors of mutagenic compounds. Thereby, toxicity tests to non-target organisms are critical step to develop harmless dyes to environment and in this context, zebrafish early life stages are becoming an important alternative model. We aimed to assess the toxic effects of the synthetic dye Basic Red 51 (BR51, used in cosmetic industry), the natural dye erythrostominone (ERY, a potential commercial dye extracted from fungi) and its photodegradation product (DERY), using zebrafish early life assays. Developmental malformations on embryos and behavioral impairment on larvae were explored. Our results showed that embryos exposed to BR51 and ERY exhibited a large yolk sac (LOEC = 7.5 mg L-1), possibly due to a deformity or delayed resorption. ERY also induced pericardial and yolk sac edemas at high concentrations (LOEC = 15 and 30 mg L-1, respectively). Moreover, larvae swan less distance and time when exposed to ERY (LOEC = 7.5 mg L-1) and BR51 (LOEC = 1.875 mg L-1). The lowest larvae locomotion have been associated with impairment of the yolk sac, important tissue of the energy source. Interestingly, DERY did not affect neither development nor behavior of zebrafish, showing that ERY photodegradation is sufficient to prevent its toxic effects. In conclusion, both natural and synthetic dyes impaired development and behavior of zebrafish early life, therefore, a simple treatment of the natural dye can prevent the aquatic life impact.


Subject(s)
Coloring Agents/toxicity , Environmental Exposure/prevention & control , Animals , Azo Compounds/pharmacology , Behavior, Animal/drug effects , Embryo, Nonmammalian/drug effects , Environmental Pollutants , Larva/drug effects , Locomotion/drug effects , Photolysis , Zebrafish/growth & development
3.
J Nutr Biochem ; 26(1): 64-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25448608

ABSTRACT

Cocoa is rich in flavonoids, which are potent antioxidants with established benefits for cardiovascular health but unproven effects on neurodegeneration. Sirtuins (SIRTs), which make up a family of deacetylases, are thought to be sensitive to oxidation. In this study, the possible protective effects of cocoa in the diabetic retina were assessed. Rat Müller cells (rMCs) exposed to normal or high glucose (HG) or H2O2 were submitted to cocoa treatment in the presence or absence of SIRT-1 inhibitor and small interfering RNA The experimental animal study was conducted in streptozotocin-induced diabetic rats randomized to receive low-, intermediate-, or high-polyphenol cocoa treatments via daily gavage for 16 weeks (i.e., 0.12, 2.9 or 22.9 mg/kg/day of polyphenols). The rMCs exposed to HG or H2O2 exhibited increased glial fibrillary acidic protein (GFAP) and acetyl-RelA/p65 and decreased SIRT1 activity/expression. These effects were cancelled out by cocoa, which decreased reactive oxygen species production and PARP-1 activity, augmented the intracellular pool of NAD(+), and improved SIRT1 activity. The rat diabetic retinas displayed the early markers of retinopathy accompanied by markedly impaired electroretinogram. The presence of diabetes activated PARP-1 and lowered NAD(+) levels, resulting in SIRT1 impairment. This augmented acetyl RelA/p65 had the effect of up-regulated GFAP. Oral administration of polyphenol cocoa restored the above alterations in a dose-dependent manner. This study reveals that cocoa enriched with polyphenol improves the retinal SIRT-1 pathway, thereby protecting the retina from diabetic milieu insult.


Subject(s)
Cacao/chemistry , Diabetic Retinopathy/prevention & control , Glial Fibrillary Acidic Protein/metabolism , Polyphenols/pharmacology , Protective Agents/pharmacology , Animals , Antioxidants/pharmacology , Catechin/blood , Chromatography, Liquid , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/prevention & control , Dose-Response Relationship, Drug , Glial Fibrillary Acidic Protein/genetics , Glucose/metabolism , Hydrogen Peroxide/metabolism , Male , Neuroglia/drug effects , Neuroglia/metabolism , Oxidative Stress/drug effects , Rats , Rats, Inbred SHR , Reactive Oxygen Species/metabolism , Retina/drug effects , Retina/metabolism , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Streptozocin/adverse effects , Tandem Mass Spectrometry , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL