Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J Integr Plant Biol ; 65(5): 1153-1169, 2023 May.
Article in English | MEDLINE | ID: mdl-36573424

ABSTRACT

For adaptation to ever-changing environments, plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates (GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promoting hormone brassinosteroid (BR) inhibits GSLs accumulation while enhancing biosynthesis of primary sulfur metabolites, including cysteine (Cys) and glutathione (GSH) both in Arabidopsis and Brassica crops, fine-tuning secondary and primary sulfur metabolism to promote plant growth. Furthermore, we demonstrate that of BRASSINAZOLE RESISTANT 1 (BZR1), the central component of BR signaling, exerts distinct transcriptional inhibition regulation on indolic and aliphatic GSL via direct MYB51 dependent repression of indolic GSL biosynthesis, while exerting partial MYB29 dependent repression of aliphatic GSL biosynthesis. Additionally, BZR1 directly activates the transcription of APR1 and APR2 which encodes rate-limiting enzyme adenosine 5'-phosphosulfate reductases in the primary sulfur metabolic pathway. In summary, our findings indicate that BR inhibits the biosynthesis of GSLs to prioritize sulfur usage for primary metabolites under normal growth conditions. These findings expand our understanding of BR promoting plant growth from a metabolism perspective.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Sulfur/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
J Integr Plant Biol ; 65(7): 1794-1813, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37009849

ABSTRACT

The plant hormone ethylene is essential for climacteric fruit ripening, although it is unclear how other phytohormones and their interactions with ethylene might affect fruit ripening. Here, we explored how brassinosteroids (BRs) regulate fruit ripening in tomato (Solanum lycopersicum) and how they interact with ethylene. Exogenous BR treatment and increased endogenous BR contents in tomato plants overexpressing the BR biosynthetic gene SlCYP90B3 promoted ethylene production and fruit ripening. Genetic analysis indicated that the BR signaling regulators Brassinazole-resistant1 (SlBZR1) and BRI1-EMS-suppressor1 (SlBES1) act redundantly in fruit softening. Knocking out SlBZR1 inhibited ripening through transcriptome reprogramming at the onset of ripening. Combined transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing identified 73 SlBZR1-repressed targets and 203 SlBZR1-induced targets involving major ripening-related genes, suggesting that SlBZR1 positively regulates tomato fruit ripening. SlBZR1 directly targeted several ethylene and carotenoid biosynthetic genes to contribute to the ethylene burst and carotenoid accumulation to ensure normal ripening and quality formation. Furthermore, knock-out of Brassinosteroid-insensitive2 (SlBIN2), a negative regulator of BR signaling upstream of SlBZR1, promoted fruit ripening and carotenoid accumulation. Taken together, our results highlight the role of SlBZR1 as a master regulator of tomato fruit ripening with potential for tomato quality improvement and carotenoid biofortification.


Subject(s)
Brassinosteroids , Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit/metabolism , Ethylenes , Plant Growth Regulators , Carotenoids , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
BMC Vet Res ; 18(1): 56, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35078465

ABSTRACT

BACKGROUND: Avian hepatitis E virus (HEV) is the pathogenic agent of big liver and spleen disease (BLS) and of hepatitis-splenomegaly syndrome (HSS) in chickens, which have caused economic losses to the poultry industry in China. In this study, 18 samples of BLS chickens were collected to reveal the molecular epidemiological characteristics of avian HEV in the province of Shandong, China. RESULTS: Gross and microscopic lesions of clinical samples were observed; then, virology detection and genetic analysis of avian HEV were performed. The results showed that there was significant swelling and rupture in the liver and that the spleen was enlarged. Microscopic lesions demonstrated obvious hemorrhage in the liver, with infiltration of heterophilic granulocytes, lymphocytes, and macrophages, as well as the reduction of lymphocytes in the spleen. Eleven of the 18 samples were positive for avian HEV, with a positive rate of 61.11%. More importantly, all avian HEV-positive samples were mixed infections: among these, the mixed infections of avian HEV and chicken infectious anemia virus (CIAV) and avian HEV and fowl adenovirus (FAdV) were the most common. Furthermore, the genetic evolution analysis showed that all avian HEV strains obtained here did not belong to the reported 4 genotypes, thus constituting a potential novel genotype. CONCLUSIONS: These results of this study further enrich the epidemiological data on avian HEV in Shandong, prove the genetic diversity of avian HEV in China, and uncover the complex mixed infections of avian HEV clinical samples.


Subject(s)
Coinfection , Hepatitis E , Hepatitis, Viral, Animal , Poultry Diseases , Animals , Chickens , China/epidemiology , Coinfection/veterinary , Hepatitis E/epidemiology , Hepatitis E/veterinary , Hepatitis, Viral, Animal/diagnosis , Hepatitis, Viral, Animal/epidemiology , Hepevirus/genetics , Molecular Epidemiology , Phylogeny , Poultry Diseases/diagnosis , Poultry Diseases/epidemiology
4.
Biochem Biophys Res Commun ; 553: 172-179, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33773140

ABSTRACT

BACKGROUND: Cardiac fibrosis will increase wall stiffness and diastolic dysfunction, which will eventually lead to heart failure. Asenapine maleate (AM) is widely used in the treatment of schizophrenia. In the current study, we explored the potential mechanism underlying the role of AM in angiotensin II (Ang II)-induced cardiac fibrosis. METHODS: Cardiac fibroblasts (CFs) were stimulated using Ang II with or without AM. Cell proliferation was measured using the cell counting kit-8 assay and the Cell-Light EdU Apollo567 In Vitro Kit. The expression levels of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA) were detected using immunofluorescence or western blotting. At the protein level, the expression levels of the components of the transforming growth factor beta 1 (TGFß1)/mitogen-activated protein kinase (MAPK) signaling pathway were also detected. RESULTS: After Ang II stimulation, TGFß1, TGFß1 receptor, α-SMA, fibronectin (Fn), collagen type I (Col1), and collagen type III (Col3) mRNA levels increased; the TGFß1/MAPK signaling pathway was activated in CFs. After AM pretreatment, cell proliferation was inhibited, the numbers of PCNA -positive cells and the levels of cardiac fibrosis markers decreased. The activity of the TGFß1/MAPK signaling pathway was also inhibited. Therefore, AM can inhibit cardiac fibrosis by blocking the Ang II-induced activation through TGFß1/MAPK signaling pathway. CONCLUSIONS: This is the first report to demonstrate that AM can inhibit Ang II-induced cardiac fibrosis by down-regulating the TGFß1/MAPK signaling pathway. In this process, AM inhibited the proliferation and activation of CFs and reduced the levels of cardiac fibrosis markers. Thus, AM represents a potential treatment strategy for cardiac fibrosis.


Subject(s)
Angiotensin II/pharmacology , Dibenzocycloheptenes/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , MAP Kinase Signaling System/drug effects , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Fibroblasts/cytology , Fibrosis/metabolism , Fibrosis/prevention & control , Myocardium/cytology , Myocardium/metabolism , Rats , Rats, Wistar , Schizophrenia/drug therapy
5.
BMC Vet Res ; 17(1): 17, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413367

ABSTRACT

BACKGROUND: Porcine circovirus type 2 (PCV2) is one of the crucial swine viral pathogens, caused porcine circovirus associated diseases (PCVAD). Shandong province is one of the most important pork producing areas and bears a considerable economic loss due to PCVAD. However, there is limited information on epidemiology and coinfection rate of PCV2 with other critical swine diseases in this area, such as porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), Pseudorabies virus (PRV), and porcine epidemic diarrhea virus (PEDV). RESULTS: Overall, 89.59% serum samples and 36.98% tissue samples were positive for PCV2 specified ELISA and PCR positive for PCV2, respectively. The coinfection rates of PCV2 with PRRSV, PRV, CSFV, and PEDV were 26.73%, 18.37%, 13.06%, and 3.47%, respectively. Moreover, genetic characteristic of PCV2 were analyzed based on the cap genes showing that PCV2d is the dominant sub-genotype circulating in the province. CONCLUSIONS: Our findings reveal that PCV2d, as the dominant strain, is prevailing in pig farms in Shandong province at high levels. There was a high frequency of coinfection of PCV2 and PRRSV.


Subject(s)
Circoviridae Infections/veterinary , Classical Swine Fever/epidemiology , Coinfection/veterinary , Coronavirus Infections/veterinary , Porcine Reproductive and Respiratory Syndrome/epidemiology , Pseudorabies/epidemiology , Swine Diseases/epidemiology , Animals , China/epidemiology , Circoviridae Infections/epidemiology , Circovirus , Classical Swine Fever Virus/physiology , Coinfection/epidemiology , Coinfection/virology , Coronavirus Infections/epidemiology , Herpesvirus 1, Suid/physiology , Porcine epidemic diarrhea virus/physiology , Porcine respiratory and reproductive syndrome virus/physiology , Swine , Swine Diseases/virology
6.
Plant Biotechnol J ; 18(1): 141-154, 2020 01.
Article in English | MEDLINE | ID: mdl-31161714

ABSTRACT

Fumonisin B1 (FB1) and Alternaria alternate f. sp. lycopersici (AAL)-toxin are classified as sphinganine analog mycotoxins (SAMTs), which induce programmed cell death (PCD) in plants and pose health threat to humans who consume the contaminated crop products. Herein, Fumonisin B1 Resistant41 (FBR41), a dominant mutant allele, was identified by map-based cloning of Arabidopsis FB1-resistant mutant fbr41, then ectopically expressed in AAL-toxin sensitive tomato (Solanum lycopersicum) cultivar. FBR41-overexpressing tomato plants exhibited less severe cell death phenotype upon AAL-toxin treatment. Analysis of free sphingoid bases showed that both fbr41 and FBR41-overexpressing tomato plants accumulated less sphinganine and phytosphingosine upon FB1 and AAL-toxin treatment, respectively. Alternaria stem canker is a disease caused by AAL and responsible for severe economic losses in tomato production, and FBR41-overexpressing tomato plants exhibited enhanced resistance to AAL with decreased fungal biomass and less cell death, which was accompanied by attenuated accumulation of free sphingoid bases and jasmonate (JA). Taken together, our results indicate that FBR41 is potential in inhibiting SAMT-induced PCD and controlling Alternaria stem canker in tomato.


Subject(s)
Alternaria/pathogenicity , Disease Resistance/genetics , Genes, Plant , Mycotoxins , Plant Diseases/genetics , Solanum lycopersicum , Cell Death , Fumonisins , Plant Diseases/microbiology
7.
FASEB J ; 33(4): 5350-5365, 2019 04.
Article in English | MEDLINE | ID: mdl-30768358

ABSTRACT

Currently, cisplatin (DDP) is the first-line chemotherapeutic agent used for treatment of ovarian cancer, but gradually acquired drug resistance minimizes its therapeutic outcomes. We aimed to identify crucial genes associated with DDP resistance in ovarian cancer and uncover potential mechanisms. Two sets of gene expression data were downloaded from Gene Expression Omnibus, and bioinformatics analysis was conducted. In our study, the differentially expressed genes between DDP-sensitive and DDP-resistant ovarian cancer were screened in GSE15709 and GSE51373 database, and chromosome condensation 2 regulator (RCC2) and nucleoporin 160 were identified as 2 genes that significantly up-regulated in DDP-resistant ovarian cancer cell lines compared with DDP-sensitive cell lines. Moreover, RCC2, Ral small GTPase (RalA), and Ral binding protein-1 (RalBP1) expression was found to be significantly higher in DDP-resistant ovarian cancer tissues than in DDP-sensitive tissues. RCC2 plays a positive role in cell proliferation, apoptosis, and migration in DDP-resistant ovarian cancer cell lines in vitro and in vivo. Furthermore, RCC2 could interact with RalA, thus promoting its downstream effector RalBP1. RalA knockdown could reverse the effects of RCC2 overexpression on DDP-resistant ovarian cancer cell proliferation, apoptosis, and migration. Similarly, RalA overexpression could alleviate the effects of RCC2 knockdown in DDP-resistant ovarian cancer cells. Taken together, RCC2 may function as an oncogene, regulating the RalA signaling pathway, and intervention of RCC2 expression might be a promising therapeutic strategy for DDP-resistant ovarian cancer.-Gong, S., Chen, Y., Meng, F., Zhang, Y., Wu, H., Li, C., Zhang, G. RCC2, a regulator of the RalA signaling pathway, is identified as a novel therapeutic target in cisplatin-resistant ovarian cancer.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Cisplatin/therapeutic use , Guanine Nucleotide Exchange Factors/metabolism , Nuclear Pore Complex Proteins/metabolism , Ovarian Neoplasms/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Computational Biology , Female , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Immunoprecipitation , Mice , Nuclear Pore Complex Proteins/genetics , Ovarian Neoplasms/drug therapy , Real-Time Polymerase Chain Reaction
8.
Int J Med Microbiol ; 306(8): 722-729, 2016 12.
Article in English | MEDLINE | ID: mdl-27528592

ABSTRACT

Whole-genome sequencing (WGS) was used to investigate the genetic features of the recently identified lsa(E) gene in porcine S. aureus ST9 isolates. Three quinupristin/dalfopristin-resistant isolates harboring the lsa(E) gene (two MRSA and one MSSA) were sequenced. Phylogenetic analysis of 184S. aureus genomes showed that ST9 porcine isolates belong to a distinct sequence cluster. Further analysis showed that all isolates were deficient in the recently described type IV restriction-modification system and SCCmec type XII was identified in the two MRSA isolates, which included a rare class C2 mec gene complex. A 24kb ΨSCC fragment was found in the MRSA and MSSA isolates sharing 99% nucleotide sequence homology with the ΨSCCJCSC6690 (O-2) element of a ST9 MRSA isolate from Thailand (accession number AB705453). Comparison of these ST9 isolates with 181 publically available S. aureus genomes identified 24 genes present in all (100%) ST9 isolates, that were absent from the most closely related human isolate. Our analysis suggests that the sequenced quinupristin/dalfopristin-resistant ST9 lineage represent a reservoir of mobile genetic elements associated with resistance and virulence features.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Swine/microbiology , Virginiamycin/pharmacology , Animals , Cluster Analysis , DNA Restriction-Modification Enzymes/deficiency , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Order , Genome, Bacterial , Genotype , Interspersed Repetitive Sequences , Molecular Typing , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Staphylococcus aureus/classification , Thailand
9.
Mol Cell Probes ; 29(3): 172-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25843529

ABSTRACT

Streptococcus pyogenes causes human infections ranging from mild pharyngitis and impetigo to serious diseases including necrotizing fasciitis and streptococcal toxic shock syndrome. The objective of this study was to compare molecular emm typing and pulsed field gel electrophoresis (PFGE) with multiple-locus variable-number tandem-repeat analysis (MLVA) for genotyping of Chinese S. pyogenes isolates. Molecular emm typing and PFGE were performed using standard protocols. Seven variable number tandem repeat (VNTR) loci reported in a previous study were used to genotype 169 S. pyogenes geographically-diverse isolates from China isolated from a variety of disease syndromes. Multiple-locus variable-number tandem-repeat analysis provided greater discrimination between isolates when compared to emm typing and PFGE. Removal of a single VNTR locus (Spy2) reduced the sensitivity by only 0.7%, which suggests that Spy2 was not informative for the isolates screened. The results presented support the use of MLVA as a powerful epidemiological tool for genotyping S. pyogenes clinical isolates.


Subject(s)
Genotype , Molecular Typing , Streptococcus pyogenes/genetics , China , Electrophoresis, Gel, Pulsed-Field , Humans , Minisatellite Repeats , Streptococcus pyogenes/physiology
10.
J Clin Microbiol ; 52(8): 3038-43, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24920781

ABSTRACT

The typing of Mycoplasma pneumoniae mainly relies on the detection of nucleic acid, which is limited by the use of a single gene target, complex operation procedures, and a lengthy assay time. Here, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled to ClinProTools was used to discover MALDI-TOF MS biomarker peaks and to generate a classification model based on a genetic algorithm (GA) to differentiate between type 1 and type 2 M. pneumoniae isolates. Twenty-five M. pneumoniae strains were used to construct an analysis model, and 43 Mycoplasma strains were used for validation. For the GA typing model, the cross-validation values, which reflect the ability of the model to handle variability among the test spectra and the recognition capability value, which reflects the model's ability to correctly identify its component spectra, were all 100%. This model contained 7 biomarker peaks (m/z 3,318.8, 3,215.0, 5,091.8, 5,766.8, 6,337.1, 6,431.1, and 6,979.9) used to correctly identify 31 type 1 and 7 type 2 M. pneumoniae isolates from 43 Mycoplasma strains with a sensitivity and specificity of 100%. The strain distribution map and principle component analysis based on the GA classification model also clearly showed that the type 1 and type 2 M. pneumoniae isolates can be divided into two categories based on their peptide mass fingerprints. With the obvious advantages of being rapid, highly accurate, and highly sensitive and having a low cost and high throughput, MALDI-TOF MS ClinProTools is a powerful and reliable tool for M. pneumoniae typing.


Subject(s)
Bacterial Typing Techniques/methods , Mycoplasma pneumoniae/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacterial Typing Techniques/economics , Costs and Cost Analysis , High-Throughput Screening Assays/methods , Humans , Mycoplasma pneumoniae/chemistry , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/economics , Time Factors
11.
Plant Physiol Biochem ; 208: 108477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442626

ABSTRACT

Tomato fruit consumption is influenced by flavor and nutrient quality. In the present study, we investigate the impact of water saving irrigation (WSI) as a pre-harvest management on flavor and nutrient quality of tomato fruit. Our results demonstrate that WSI-treated tomato fruit exhibited improved sensory scores as assessed by a taste panel, accompanied by elevated levels of SlGLK2 expression, sugars, acids, and carotenoid contents compared to non-treated fruit. Notably, WSI treatment significantly enhanced the development of chloroplast and plastoglobulus in chromoplast, which served as carotenoid storage sites and upregulated the expression of carotenoid biosynthetic genes. Furthermore, integrated transcriptome and metabolome analysis revealed heightened expression of sugar and flavonoid metabolism pathways in WSI-treated tomato fruit. Remarkably, the master regulator SlMYB12 displayed a substantially increased expression due to WSI. These findings suggest that WSI is an effective and sustainable approach to enhance the pigments metabolism and storage capacity as well as the organoleptic characteristics and nutritional value of tomato fruit, offering a win-win solution for both water conservation and quality improvement in agro-food production.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit/metabolism , Water/metabolism , Transcriptome , Carotenoids/metabolism
12.
Food Chem ; 454: 139685, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38795629

ABSTRACT

In this study, a new composite with combination of chitosan oligosaccharide (COS) and zinc oxide nanoparticles (ZnO NPs), termed Chitosan Oligosaccharide-Zinc Oxide Nanocomposites (COS-ZnO NC), was designed to enhance the quality of tomato fruits during postharvest storage. SEM analysis showed a uniform distribution of COS-ZnO NC films on tomato surfaces, indicating high biocompatibility, while the FTIR spectrum confirmed the interaction of COS and ZnO NPs via hydrogen bonds. The COS-ZnO NC exerts positive effects on post-harvest quality of tomato fruits, including significantly reduced water loss, fewer skin wrinkles, increased sugar-acid ratio, and enhanced vitamin C and carotenoids accumulation. Furthermore, COS-ZnO NC induces transcription of carotenoid biosynthesis genes and promotes carotenoids storage in the chromoplast. These results suggest that the COS-ZnO NC film can significantly improve the quality traits of tomato fruits, and therefore is potential in post-harvest storage of tomato fruits.


Subject(s)
Carotenoids , Chitosan , Fruit , Nanocomposites , Oligosaccharides , Solanum lycopersicum , Zinc Oxide , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Chitosan/chemistry , Zinc Oxide/chemistry , Fruit/chemistry , Fruit/metabolism , Fruit/growth & development , Nanocomposites/chemistry , Carotenoids/chemistry , Carotenoids/analysis , Oligosaccharides/chemistry , Oligosaccharides/analysis , Food Preservation/methods , Food Storage
13.
Int Immunopharmacol ; 136: 112338, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850787

ABSTRACT

Cardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis. Our results showed nicotine exposure led to the proliferation and transformation of cardiac fibroblasts (CFs) into myofibroblasts (MFs) by impairing autophagy flux. Through the use of drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) technology, it was discovered that nicotine directly increased the stability and protein levels of lactate dehydrogenase A (LDHA) by binding to it. Nicotine treatment impaired autophagy flux by regulating the AMPK/mTOR signaling pathway, impeding the nuclear translocation of transcription factor EB (TFEB), and reducing the activity of cathepsin B (CTSB). In vivo, nicotine treatment exacerbated cardiac fibrosis induced in spontaneously hypertensive rats (SHR) and worsened cardiac function. Interestingly, the absence of LDHA reversed these effects both in vitro and in vivo. Our study identified LDHA as a novel nicotine-binding protein that plays a crucial role in mediating cardiac fibrosis by blocking autophagy flux. The findings suggest that LDHA could potentially serve as a promising target for the treatment of cardiac fibrosis.


Subject(s)
Autophagy , Fibrosis , Nicotine , Animals , Autophagy/drug effects , Rats , Male , Rats, Inbred SHR , Signal Transduction/drug effects , Myocardium/pathology , Myocardium/metabolism , Lactate Dehydrogenase 5/metabolism , Cells, Cultured , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , TOR Serine-Threonine Kinases/metabolism , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Rats, Sprague-Dawley
14.
Antimicrob Agents Chemother ; 57(3): 1521-3, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23263003

ABSTRACT

Macrolide resistance rates of Mycoplasma pneumoniae in the Beijing population were as high as 68.9%, 90.0%, 98.4%, 95.4%, and 97.0% in the years 2008 to 2012, respectively. Common macrolide-resistant mobile genetic elements were not detected with any isolate. These macrolide-resistant isolates came from multiple clones rather than the same clone. No massive aggregation of a particular clone was found in a specific period.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Macrolides/pharmacology , Mycoplasma pneumoniae/drug effects , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/drug therapy , RNA, Ribosomal, 23S/genetics , China , Clone Cells , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Minisatellite Repeats , Mutation , Mycoplasma pneumoniae/isolation & purification , Pneumonia, Mycoplasma/microbiology , Public Health Surveillance , Sequence Analysis, DNA
15.
J Clin Microbiol ; 51(2): 636-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23224090

ABSTRACT

A total of 201 Mycoplasma pneumoniae clinical isolates from Beijing, China, isolated from 2008 to 2011, were clustered into 16 multiple-locus variable-number tandem-repeat analysis (MLVA) types, of which 6 new MLVA types have never been reported previously. Type 1 isolates based on p1 gene genotyping were mainly MLVA types E, J, P, U, and X. There was no correlation between macrolide-resistant Mycoplasma pneumoniae and their MLVA type.


Subject(s)
Minisatellite Repeats/genetics , Multilocus Sequence Typing , Mycoplasma pneumoniae/classification , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/microbiology , China , Cluster Analysis , Genes, Bacterial , Genotype , Humans , RNA, Ribosomal, 23S
16.
Microorganisms ; 12(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38257888

ABSTRACT

Mycoplasma pneumoniae is a significant cause of community-acquired pneumonia, which is often empirically treated with macrolides (MLs), but, presently, resistance to MLs has been a matter of close clinical concern. This assay is intended to contribute to resistance detection of M. pneumoniae in clinical practice. A novel real-time PCR assay with two non-overlapping probes on the same nucleic acid strand was designed in this study. It could effectively detect all mutation types of M. pneumoniae in 23S rRNA at loci 2063 and 2064. The results were determined by the following methods: ΔCT < 0.5 for MLs-sensitive M. pneumoniae; ΔCT > 2.0 for MLs-resistant M. pneumoniae; 10 copies as a limit of detection for all types. For detection of M. pneumoniae in 92 clinical specimens, the consistency between the results of this assay and the frequently used real-time PCR results was 95.65%. The consistency of MLs resistance results between PCR sequencing and this assay was 100% in all 43 specimens. The assay could not only cover a comprehensive range of targets and have high detection sensitivity but is also directly used for detection and MLs analysis of M. pneumoniae in specimens.

17.
Front Microbiol ; 14: 1166078, 2023.
Article in English | MEDLINE | ID: mdl-37234528

ABSTRACT

In recent years, the poultry industry had been markedly affected by adenoviral diseases such as hydropericardium syndrome and inclusion body hepatitis caused by fowl adenovirus (FAdV), which have become increasingly prevalent in China. Shandong Province, China, is an important area for poultry breeding where various complex and diverse FAdV serotypes were isolated. However, the dominant strains and their pathogenic characteristics are not yet reported. Therefore, a pathogenicity and epidemiological survey of FAdV was conducted, showing that the local dominant serotypes of FAdV epidemics were FAdV-2, FAdV-4, FAdV-8b, and FAdV-11. Their mortality rates in the 17-day-old specific-pathogen-free (SPF) chicks ranged from 10 to 80%; clinical signs included mental depression, diarrhea, and wasting. The maximum duration of viral shedding was 14 days. The highest incidence in all infected groups was on days 5-9, and then gradual regression occurred thereafter. The most pronounced symptoms occurred in chicks infected with FAdV-4, including pericardial effusion and inclusion body hepatitis lesions. Our results add to the current epidemiological data on FAdV in poultry flocks in Shandong and elucidate the pathogenicity of dominant serotypes. This information may be important for FAdV vaccine development and comprehensive epidemic prevention and control.

18.
Vet Sci ; 10(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37104419

ABSTRACT

Chicken infectious anemia (CIA) is a vertical transmission infectious chicken disease caused by the chicken infectious anemia virus (CAV). The disease can induce stunting and immunosuppression in chicks by infecting bone marrow-derived stem cells, causing huge economic losses for the poultry industry. To determine the prevalence of CIA in Shandong Province, China, 854 suspected CIA samples were collected and analyzed in 13 cities in Shandong from 2020 to 2022. The PCR results showed that a total of 115 CAV were isolated. The CAV-positive rates were 17.21% (26/151) in 2020, 12.23% (35/286) in 2021, and 12.94% (54/417) in 2022, with severe mixed infections. Among them, CAV and fowl adenovirus (FAdV) were the most common, accounting for 40.86%. VP1 gene homology analysis showed that isolated strains shared 96.1-100% homology with the previously reported CAV strains. Genetic variation analysis showed that most of the isolated CAV strains were located in genotype A. These results indicate that CIA infection in Shandong chickens in recent years has been prevalent and mixed infections are common, but there were no significant genetic variations. Our results extend the understanding of the prevalence and genetic evolution of CIA in Shandong Province. They will offer new references for further study of the epidemiology and virus variation and the prevention and control of this disease.

19.
Front Microbiol ; 14: 1110720, 2023.
Article in English | MEDLINE | ID: mdl-37007521

ABSTRACT

ST7 Staphylococcus aureus is highly prevalent in humans, pigs, as well as food in China; however, staphylococcal food poisoning (SFP) caused by this ST type has rarely been reported. On May 13, 2017, an SFP outbreak caused by ST7 S. aureus strains occurred in two campuses of a kindergarten in Hainan Province, China. We investigated the genomic characteristics and phylogenetic analysis of ST7 SFP strains combined with the 91 ST7 food-borne strains from 12 provinces in China by performing whole-genome sequencing (WGS). There was clear phylogenetic clustering of seven SFP isolates. Six antibiotic genes including blaZ, ANT (4')-Ib, tetK, lnuA, norA, and lmrS were present in all SFP strains and also showed a higher prevalence rate in 91 food-borne strains. A multiple resistance plasmid pDC53285 was present in SFP strain DC53285. Among 27 enterotoxin genes, only sea and selx were found in all SFP strains. A ФSa3int prophage containing type A immune evasion cluster (sea, scn, sak, and chp) was identified in SFP strain. In conclusion, we concluded that this SFP event was caused by the contamination of cakes with ST7 S. aureus. This study indicated the potential risk of new emergencing ST7 clone for SFP.

20.
Foodborne Pathog Dis ; 9(8): 706-12, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22779748

ABSTRACT

Fourteen Campylobacter jejuni genes--porA, cadF, omp18, dnaK, flaC, peb1, peb2, peb3, peb4, ahpC, groEL, tuF, hipO, and Cj0069--were cloned and expressed in Escherichia coli BL21. The recombinant proteins were purified on histidine (His) and glutathione S-transferase (GST) trap columns using the ÄKTA Explorer 100 System. Recombinant proteins were visualized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The antigenicities of these recombinant proteins were assessed by Western blotting and enzyme-linked immunosorbent assays with anti-C. jejuni immune rabbit sera. Four recombinant proteins, including rGST-PorA, rHis-CadF, rGST-GroEL, and rGST-TuF, demonstrated reactions with both anti-serum and preimmune serum, while rHis-DnaK, rGST-FlaC, rGST-PEB2, rGST-PEB3, rGST-PEB4, and rGST-HipO showed variable antigenicity characteristics to the anti-sera derived from different C. jejuni strains. rHis-Omp18, rHis-PEB1, and rGST-AhpC demonstrated universal and specific antigenities with the entire anti-sera panel tested in this present study, while recombinant rGST-Cj0069 and rHis-DnaK did not react with any of the anti-C. jejuni sera tested. In conclusion, rGST-AhpC may be useful as a potential serodiagnostic antigen for C. jejuni infection.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Campylobacter jejuni/genetics , Amino Acid Sequence , Animals , Antigens, Bacterial/genetics , Blotting, Western , Campylobacter Infections/diagnosis , Campylobacter Infections/genetics , Campylobacter Infections/immunology , Campylobacter jejuni/immunology , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Immune Sera/immunology , Molecular Sequence Data , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sodium Dodecyl Sulfate/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL