Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Am Chem Soc ; 145(49): 26580-26591, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38029332

ABSTRACT

The precise modulation of nanosheet stacking modes introduces unforeseen properties and creates momentous applications but remains a challenge. Herein, we proposed a strategy using bipolar molecules as torque wrenches to control the stacking modes of 2-D Zr-1,3,5-(4-carboxylphenyl)-benzene metal-organic framework (2-D Zr-BTB MOF) nanosheets. The bipolar phenyl-alkanes, phenylmethane (P-C1) and phenyl ethane (P-C2), predominantly instigated the rotational stacking of Zr-BTB-P-C1 and Zr-BTB-P-C2, displaying a wide angular distribution. This included Zr-BTB-P-C1 orientations at 0, 12, 18, and 24° and Zr-BTB-P-C2 orientations at 0, 6, 12, 15, 24, and 30°. With reduced polarity, phenyl propane (P-C3) and phenyl pentane (P-C5) introduced steric hindrance and facilitated alkyl hydrophobic interactions with the nanosheets, primarily resulting in the modulation of eclipsed stacking for Zr-BTB-P-C3 (64.8%) and Zr-BTB-P-C5 (93.3%) nanosheets. The precise angle distributions of four Zr-BTB-P species were in agreement with theoretical calculations. The alkyl induction mechanism was confirmed by the sequential guest replacement and 2-D 13C-1H heteronuclear correlation (HETCOR). In addition, at the single-particle level, we first observed that rotational stacked pores exhibited similar desorption rates for xylene isomers, while eclipsed stacked pores showed significant discrepancy for xylenes. Moreover, the eclipsed nanosheets as stationary phases exhibited high resolution, selectivity, repeatability, and durability for isomer separation. The universality was proven by another series of bipolar acetate-alkanes. This bipolar molecular torque wrench strategy provides an opportunity to precisely control the stacking modes of porous nanosheets.

2.
Anal Chem ; 95(51): 18760-18766, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38078811

ABSTRACT

In separation science, precise control and regulation of the MOF stationary phase are crucial for achieving a high separation performance. We supposed that increasing the mass transfer resistance of MOFs with excessive porosity to achieve a moderate mass transfer resistance of the analytes is the key to conducting the MOF stationary phase with a high resolution. Three-dimensional UiO-67 (UiO-67-3D) and two-dimensional UiO-67 (UiO-67-2D) were chosen to validate this strategy. Compared with UiO-67-3D with overfast mass transfer and low retention, the reduced porosity of UiO-67-2D increased the mass transfer resistance of analytes in reverse, resulting in improved separation performance. Kinetic diffusion experiments were conducted to verify the difference in mass transfer resistance of the analytes between UiO-67-3D and UiO-67-2D. In addition, the optimization of the UiO-67-2D thickness for separation revealed that a moderate diffusion length of the analytes is more advantageous in achieving the equilibrium of absorption and desorption.

3.
J Hum Genet ; 68(6): 419-425, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36828876

ABSTRACT

Generalized pustular psoriasis (GPP) is an autoinflammatory skin disease whose pathogenesis has not yet been fully elucidated. Alpha-1-antichymotrypsin(ACT) is a protein encoded by the SERPINA3 gene and an inhibitor of cathepsin G. One study of a European sample suggested that the loss of ACT function caused by SERPINA3 mutation is implicated in GPP. However, the role of SERPINA3 in the pathogenesis of GPP in other ethnic populations is unclear. To explore this, seventy children with GPP were performed next-generation sequencing to identify rare variants in the SERPINA3 gene. Bioinformatic analysis and functional tests were used to determine the effects of the variants, and a comprehensive analysis was performed to determine the pathogenicity of the variants and whether they are associated with GPP. One rare deletion and three rare missense variants were identified in the SERPINA3 gene in GPP. The deletion variant c.1246_1247del was found to result in a mutant protein with an extension of 10 amino acids and a C-terminal of 20 amino acids that was completely different from the wild-type. This mutant was found to impede secretion of ACT, thus failing to function as an inhibitor of cathepsin G. Two missense variants were found to reduce the ability of ACT to inhibit cathepsin G enzymatic activity. The association analysis suggested that the deletion variant is associated with GPP. This study identified four rare novel mutations of SERPINA3 and demonstrated that three of these mutations result in loss of function, contributing to the pathogenesis of pediatric-onset GPP in the Asian population.


Subject(s)
Psoriasis , Serpins , Skin Diseases , Child , Humans , Interleukins/genetics , Interleukins/metabolism , Cathepsin G/genetics , Psoriasis/drug therapy , Psoriasis/genetics , Mutation , Serpins/genetics
4.
BMC Cardiovasc Disord ; 23(1): 315, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353727

ABSTRACT

OBJECTIVE: This study aimed to examine the effects of mindfulness-based stress reduction (MBSR) in patients with acute myocardial infarction (AMI) after primary percutaneous coronary intervention (PPCI). METHODS: A retrospective study was conducted with data collected from AMI patients who underwent successful PPCI. The study included 61 cases that received 8-week MBSR intervention (MBSR group) and 61 cases that received weekly health education (control group) over the same period. Outcome measures, including hemodynamic parameters, psychosocial characteristics [Hospital Anxiety and Depression Scale (HADS), Perceived Stress Scale (PSS), Perceived Social Support Scale (PSSS)], health-related quality of life [HRQoL, 7-item Seattle Angina Questionnaire (SAQ-7)], and major adverse cardiovascular events (MACE), were assessed at baseline (T1), post-intervention (T2), 1 month after the post-intervention (T3) and 3 months after the post-intervention (T4). RESULTS: Compared to the control group, the MBSR group showed improvements in blood pressure, specifically in systolic blood pressure (SBP) at T4, and diastolic blood pressure (DBP) at T3 and T4, and mean arterial blood pressure (MABP) at T3 and T4. Additionally, the MBSR group had lower scores of anxiety and perceived stress (HADS, PSS) and higher scores of perceived social support (PSSS) after the intervention. Furthermore, the MBSR group had higher scores on the SAQ-7 at all measurement points. The control group had a significantly higher total MACE rate compared to the MBSR group (26.23% vs. 9.84%). CONCLUSIONS: This study provides support for the potential benefits of MBSR as an adjunctive treatment for AMI patients undergoing PPCI.


Subject(s)
Mindfulness , Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Quality of Life/psychology , Retrospective Studies , Stress, Psychological/diagnosis , Stress, Psychological/therapy , Myocardial Infarction/diagnosis , Myocardial Infarction/therapy , Myocardial Infarction/psychology , Percutaneous Coronary Intervention/adverse effects , Treatment Outcome
5.
Anal Chem ; 94(41): 14251-14256, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36194134

ABSTRACT

Peak broadening and peak tailing are common but rebarbative phenomena that always occur when using metal-organic frameworks (MOFs) as stationary phases. These phenomena result in diverse "low-performance" MOF stationary phases. Here, by adjusting the particle size of MOF stationary phases from microscale to nanoscale, we successfully enhance the separation abilities of these "low-performance" MOFs. Three zirconium-based MOFs (NU-1000, PCN-608, and PCN-222) with different organic ligands were synthesized with sizes of tens of micrometers and hundreds of nanometers, respectively. All the nanoscale MOFs exhibited exceedingly higher separation abilities than the respective microscale MOFs. The mechanism investigation proved that reducing the particle size can reduce the mass transfer resistance, thus enhancing the column efficiency by controlling the separation kinetics. Modulating the particle size of MOFs is an efficient way to enhance the separation capability of "low-performance" MOFs and to design high-performance MOF stationary phases.

6.
Angew Chem Int Ed Engl ; 61(37): e202207786, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35723492

ABSTRACT

Precise shaping of metal-organic frameworks (MOFs) is significant in both fundamental coordination chemistry and practical applications, such as catalysis, separation, and biomedicine. Herein, we demonstrated a linker scissoring strategy for precisely shaping MOFs through surface conformational pairing. In this strategy, the bidentate linkers which were designed according to the original tetratopic ligands and the coordination environment of MOF surfaces, were utilized as the covering agents. The shape of these covering agents and the surface conformation of metals onto MOFs restricted them to coordinate on specific MOF facets thus precisely controlling the shape of the MOFs. Different shapes of PCN-608 from nanoplate (PCN-NP) to nanorod (PCN-NR) have been targeted by adding different bidentate linkers. The universality of this strategy was demonstrated by controlling the shapes of the NU-MOFs from nanoplate to nanorod. This strategy provides a new guiding principle to synthesize MOF nanocrystals with controlled shapes.


Subject(s)
Metal-Organic Frameworks , Catalysis , Chromatography , Metal-Organic Frameworks/chemistry , Molecular Conformation
7.
Analyst ; 146(13): 4235-4241, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34096937

ABSTRACT

Creating more exposed active sites on the metal-organic framework (MOF) surface is crucial for enhancing the recognition ability of MOF artificial receptors. Here, a copper-based MOF Cu(im)2 (im = imidazole) was utilized to act as an artificial receptor, inhibiting the activity of α-chymotrypsin. The shortest diazole ligand reduced the distance between regenerative copper sites, creating as many active sites as possible on the MOF unit surface. The amount of copper(ii) centers on the Cu(im)2 surface was calculated to be 4.96 × 106µm-2. Thus, Cu(im)2 showed exceedingly higher inhibition performance than other copper-based MOFs. The ChT activity was almost inhibited (88.8%) after the incubation with only 20 µg mL-1 Cu(im)2 for 10 min. The binding between ChT and Cu(im)2 was very fast with high affinity. Further results proved that Cu(im)2 inhibited the activity of ChT through electrostatic interactions and coordination interactions via the mixed inhibition mode. This strategy to use short ligands to create more active sites on the MOF surface provides a new direction to enhance the inhibition efficiency.


Subject(s)
Metal-Organic Frameworks , Copper , Ligands
8.
Angew Chem Int Ed Engl ; 60(13): 6920-6925, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33480119

ABSTRACT

The tuning of metal-organic framework (MOF) nanosheet stacking modes from molecular level was rarely explored although it significantly affected the properties and applications of nanosheets. Here, the different stacking modes of Zr-1, 3, 5-(4-carboxylphenyl)-benzene framework nanosheets were synthesized through the induction of different host-guest noncovalent interactions. The solvents of methyl benzene and ethyl acetate induced twisted stacking of nanosheets with the specific rotation angles of 12°, 18°, 24° and 6°, 18°, 24°, 30°, respectively, which was in agreement with theoretical calculations. Meanwhile, the alkanes were likely to vertically enter the pores of Zr-BTB nanosheets because of steric hindrance and hydrophobic interactions, resulting in the untwisted stacking of nanosheets. The untwisted ordered nanopores showed the excellent gas chromatographic separations of benzene derivative isomers, which was better than twisted nanosheets stacking and commercial columns. This work uncovers a rational strategy to control the stacking of two-dimensional MOF nanosheets.

9.
Angew Chem Int Ed Engl ; 60(52): 27258-27263, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34714946

ABSTRACT

High-efficiency photocatalysis in metal-organic frameworks (MOF) and MOF nanosheets (NSs) are often limited by their short-lived charge separation as well as self-quenching. Here, we propose to use the energy-transfer process (EnT) to increase charge separation, thus enhancing the catalytic performance of a series of MOF NSs. With the use of NS, the photocatalyst can also be well isolated to reduce self-quenching. Tetrakis(4-carboxyphenyl) porphyrin (H4 TCPP) and 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4 TBAPy) linkers were chosen as the acceptor and donor moieties, respectively. Accounting for the precise spatial design afforded by the MOF NSs, the donor and acceptor moieties could be closely positioned on the NSs, allowing for an efficient EnT process as well as a high degree of site isolation. Two templates, donor-on-acceptor NS and acceptor-on-donor NS catalysts, were successfully synthesized, and the results show that the second one has much enhanced catalytic performances over the first one due to site-isolated active photocatalysts.

10.
BMC Cardiovasc Disord ; 20(1): 207, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32345243

ABSTRACT

BACKGROUND: Early reperfusion of the coronary artery has become the first choice for patients with ST-segment elevation myocardial infarction (STEMI). How to deal with patients who miss the time window for early reperfusion is still controversial. Based on real-world data, this study was conducted to explore whether percutaneous coronary intervention (PCI) has an advantage over standard drug therapy in patients who miss the optimal treatment window. METHODS: Consecutive patients who were diagnosed with STEMI and met the inclusion criteria between 2009 and 2018 in our center were retrospectively included in this cohort study. The primary endpoint events were major adverse cardiac events (MACEs), including heart failure, sudden cardiac death, malignant arrhythmia, thrombi and bleeding events during the period of admission. Secondary endpoint events were components of MACEs. At the same time, we also evaluated angina pectoris at admission and discharge through Canadian Cardiovascular Society (CCS) grading. RESULTS: This study enrolled 417 STEMI patients and divided them into four groups (PCI < 3 days, 14.87%; 3 days 7 days, 34.29%; MED, 29.74%). During the period of admission, MACEs occurred in 52 cases. The incidence of MACEs was 11.29, 7.95, 4.20 and 25.81% in the four respective groups (p < 0.0001). The MED group had higher rates of MACEs (OR = 3.074; 95% CI 0.1.116-8.469, p = 0.03) and cardiac death (OR = 3.027; 95% CI 1.121-8.169, p = 0.029) compared to the PCI group. Although both treatments were effective in improving CCS grade at discharge, the PCI group improved more significantly (p < 0.0001). CONCLUSIONS: In the real world, delayed PCI can be more effective in patients with angina symptoms at discharge and reduce the incidence of MACEs and cardiac death during hospitalization. The timing of intervention was independent of the occurrence of MACEs during hospitalization and of improvement in symptoms.


Subject(s)
Cardiovascular Agents/therapeutic use , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction/therapy , Time-to-Treatment , Aged , Aged, 80 and over , Cardiovascular Agents/adverse effects , China , Female , Hospital Mortality , Humans , Male , Middle Aged , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/mortality , Recovery of Function , Retrospective Studies , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/mortality , Time Factors , Treatment Outcome
11.
Proc Natl Acad Sci U S A ; 113(2): 392-7, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26711995

ABSTRACT

Pigs are important intermediate hosts for generating novel influenza viruses. The Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses (SIVs) have circulated in pigs since 1979, and human cases associated with EAH1N1 SIVs have been reported in several countries. However, the biologic properties of EAH1N1 SIVs are largely unknown. Here, we performed extensive influenza surveillance in pigs in China and isolated 228 influenza viruses from 36,417 pigs. We found that 139 of the 228 strains from pigs in 10 provinces in China belong to the EAH1N1 lineage. These viruses formed five genotypes, with two distinct antigenic groups, represented by A/swine/Guangxi/18/2011 and A/swine/Guangdong/104/2013, both of which are antigenically and genetically distinct from the current human H1N1 viruses. Importantly, the EAH1N1 SIVs preferentially bound to human-type receptors, and 9 of the 10 tested viruses transmitted in ferrets by respiratory droplet. We found that 3.6% of children (≤10 y old), 0% of adults, and 13.4% of elderly adults (≥60 y old) had neutralization antibodies (titers ≥40 in children and ≥80 in adults) against the EAH1N1 A/swine/Guangxi/18/2011 virus, but none of them had such neutralization antibodies against the EAH1N1 A/swine/Guangdong/104/2013 virus. Our study shows the potential of EAH1N1 SIVs to transmit efficiently in humans and suggests that immediate action is needed to prevent the efficient transmission of EAH1N1 SIVs to humans.


Subject(s)
Ferrets/genetics , Ferrets/virology , Influenza A Virus, H1N1 Subtype/physiology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/virology , Adult , Animals , Antigens, Viral/immunology , China/epidemiology , Evolution, Molecular , Genotype , Hemagglutinins/genetics , Humans , Immunity , Immunologic Surveillance , Influenza A Virus, H1N1 Subtype/pathogenicity , Lung/pathology , Lung/virology , Mice , Middle Aged , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/transmission , Prevalence , Swine , Virulence , Virus Replication
12.
Carcinogenesis ; 37(9): 897-903, 2016 09.
Article in English | MEDLINE | ID: mdl-27381830

ABSTRACT

No previous study has examined the association between mitochondrial DNA copy number (mtCN) and skin cancer risk prospectively. We examined the associations between peripheral blood leukocytes mtCN level and the risks of skin cancers in a case-control study nested within the Nurses' Health Study of non-Hispanic White women, including 272 melanoma cases and 293 controls, 508 squamous cell carcinoma (SCC) cases and 550 controls, and 515 basal cell carcinoma (BCC) cases and 536 controls. Relative mtCN in peripheral blood leukocytes was measured by quantitative PCR-based assay. Unconditional logistic regression models were used to examine the associations between mtCN and skin cancer risks. Compared with those with high mtCN, the risk for melanoma was 1.06 [95% confidence interval (CI) = 0.70-1.62] in the median group and 1.19 (95% CI = 0.78-1.81) for the low group. There was suggestive evidence that increased risk for melanoma was apparent among low constitutional susceptibility group [odds ratio (OR)low versus high = 1.80, 95% CI = 0.95-3.39, P for trend = 0.07, P for interaction = 0.06]. The increased risk of melanoma was also apparent among high cumulative UV exposure group (ORlow versus high = 3.40, 95% CI = 1.46-7.92, P for trend = 0.004, P for interaction = 0.01). For non-melanoma skin cancers, compared with high-mtCN group, low-mtCN group had an increased risk for SCC (OR = 1.26, 95% CI = 0.93-1.71) and BCC (OR = 1.35; 95% CI = 1.00-1.82). Because some of the associations were marginally significant, the results only provided suggestive evidence. Further studies are warranted to replicate these findings and better understand the underlying mechanisms.


Subject(s)
DNA, Mitochondrial/genetics , Gene Dosage , Leukocytes/metabolism , Melanoma/genetics , Skin Neoplasms/genetics , Adult , Carcinoma, Basal Cell/etiology , Carcinoma, Basal Cell/genetics , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/genetics , Case-Control Studies , Female , Humans , Logistic Models , Melanoma/etiology , Middle Aged , Risk , Risk Factors , Skin Neoplasms/etiology , Ultraviolet Rays
14.
Yi Chuan ; 37(8): 801-10, 2015 08.
Article in Zh | MEDLINE | ID: mdl-26266783

ABSTRACT

Neurexins are neuron-specific synaptic proteins, and abnormal structure of Neurexin1ß is closely associated with autism. To characterize the minimal promoter of autism-associated NRXN1ß gene and identify functional elements regulating its transcription, luciferase reporter plasmids containing different regulatory regions upstream of NRXN1ß gene were constructed. After transfecting HEK293 cells with these plasmids, the minimal promoter region of NRXN1ß gene was determined by detecting the transcriptional activity of luciferase reporter genes while the corresponding functional elements that significantly enhance or inhibit the activity of reporter genes were further screened out. To identify cis-acting elements, continuous nucleotide mutation within the functional regions and adjacent DNA sequences were generated using site-directed mutagenesis techniques and then transcriptional regulatory elements in corresponding regions were analyzed using transcription factor binding prediction tool. Our results showed for the first time that the minimal promoter region of human NRXN1ß gene is located between positions -88 and +156 (-88/+156); two regions -88/-73 and +156/+149 enhance while the region +229/+419 inhibits promoter activity. The region -84/-63 significantly enhances promoter activity as cis-acting elements, suggesting the presence of DBP and ABF1 transcription factor binding sites in this region.


Subject(s)
Autistic Disorder/genetics , Cell Adhesion Molecules, Neuronal/genetics , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic , Animals , Calcium-Binding Proteins , Humans , Neural Cell Adhesion Molecules
15.
Chem Sci ; 15(11): 4106-4113, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487231

ABSTRACT

The modulation of two-dimensional metal-organic framework (2-D MOF) nanosheet stacking is an effective means to improve the properties and promote the application of nanosheets in various fields. Here, we employed a series of alcohol guest molecules (MeOH, EtOH and PrOH) to modulate Zr-BTB (BTB = benzene-1,3,5-tribenzoate) nanosheets and to generate untwisted stacking. The distribution of stacking angles was statistically analyzed from high-angle annular dark-field (HAADF) and fast Fourier transform (FFT) images. The ratios of untwisted stacking were calculated, such as 77.01% untwisted stacking for MeOH, 83.45% for EtOH, and 85.61% for PrOH. The obtained untwisted Zr-BTB showed good separation abilities for different substituted benzene isomers, superior para selectivity and excellent column stability and reusability. Control experiments of 2-D Zr-TCA (TCA = 4,4',4''-tricarboxytriphenylamine) and Zr-TATB (TATB = 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzoic acid) nanosheets with similar pore sizes and stronger polarity regulated by the alcohol guests exhibited moderate separation performance. The electron microscopy images revealed that polar alcohol regulation dominantly generated the twisted stacking of Zr-TCA and Zr-TATB with various Moiré patterns. Polar guest molecules, such as alcohols, provide strong host-guest interactions during the regulation of MOF nanosheet stacking, providing an opportunity to design new porous Moiré materials with application prospects.

16.
Opt Express ; 21(10): 12218-27, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23736442

ABSTRACT

An important step of phase calculation-based fringe projection systems is 3D calibration, which builds up the relationship between an absolute phase map and 3D shape data. The existing 3D calibration methods are complicated and hard to implement in practical environments due to the requirement of a precise translating stage or gauge block. This paper presents a 3D calibration method which uses a white plate with discrete markers on the surface. Placing the plate at several random positions can determine the relationship of absolute phase and depth, as well as pixel position and X, Y coordinates. Experimental results and performance evaluations show that the proposed calibration method can easily build up the relationship between absolute phase map and 3D shape data in a simple, flexible and automatic way.


Subject(s)
Image Enhancement/instrumentation , Image Enhancement/methods , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Lighting/instrumentation , Lighting/methods , Phantoms, Imaging , Algorithms , Calibration
17.
BMC Sports Sci Med Rehabil ; 15(1): 79, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415247

ABSTRACT

OBJECTIVE: The coronavirus disease-19 (COVID-19) pandemic restricts rapid implementation of in-person delivery of cardiac rehabilitation (CR) at the center for coronary artery disease (CAD) patients undergoing percutaneous coronary intervention (PCI), thus enabling a cohort comparison of in-person vs. remote CR program. This study aims to investigate outcomes of exercise capacity, health-related quality of life (HRQL), mental health, and family burden of stable CAD patients undergoing PCI in low-to-moderate risk after different delivery models of CR program. METHODS: The study included a cohort of stable CAD patients undergoing PCI who had experienced two naturally occurring modes of CR program after hospital discharge at two time periods, January 2019 to December 2019 (in-person CR program) and May 2020 to May 2021 (remote CR program). The exercise capacity was assessed by means of 6-min walk test (6MWT), maximal oxygen uptake (VO2max) and the respiratory anaerobic threshold (VO2AT) before discharge, at the end of the 8-week and 12-week in-person or remote CR program after discharge. RESULTS: No adverse events occurred during the CR period. CAD patients had a longer distance walked in 6 min with a higher VO2max after 8-week and 12-week CR program whether in-person or remote model (p < 0.05). The distance walked in 6 min was longer and the maximal oxygen uptake (VO2max) was higher at the end of the 12-week in-person or remote CR program than 8-week in-person or remote CR program (p < 0.05). The respiratory anaerobic threshold (VO2AT) of CAD patients was decreased after 8-week CR program whether in-person or remote model (p < 0.05). CAD patients receiving remote CR program exhibited higher HRQL scores in domains of vitality (p = 0.048), role emotional (p = 0.039), mental health (p = 0.014), and the summary score of the mental composite (p = 0.048) compared to in-person CR program after 8 weeks. The anxiety and depression scores of CAD patients undergoing PCI were decreased after 8-week CR program whether in-person or remote model (p < 0.05). The CAD patients receiving remote delivery showed lower anxiety and depression scores compared to those receiving in-person delivery at the end of the 8-week CR program (p < 0.05). It was found that the family burden scores of CAD patients undergoing PCI were reduced after 8-week and 12-week CR program whether in-person or remote model (p < 0.05). The CAD patients receiving remote CR program showed lower family burden scores than those receiving in-person CR program after whether 8 weeks or 12 weeks (p < 0.05). CONCLUSION: These data indicate that a properly designed and monitored remote delivery represents a feasible and safe model for low-to-moderate-risk, stable CAD patients undergoing PCI inaccessible to in-person CR during the COVID-19 pandemic.

18.
Se Pu ; 41(10): 853-865, 2023 Oct.
Article in Zh | MEDLINE | ID: mdl-37875408

ABSTRACT

Metal organic frameworks (MOFs) are assembled from metal ions or clusters and organic ligands. The high tunability of these components offers a solid structural foundation for achieving efficient gas chromatography (GC) separation. This review demonstrates that the design of high performance MOFs with suitable stationarity should consider both the thermodynamic interactions provided by these MOFs and the kinetic diffusion of analytes. Thermodynamic parameters are basic indicators for describing the interactions between various analytes and the stationary phase. Thermodynamic parameters such as retention factors, McReynolds constants, enthalpy changes, and entropy changes can reflect the relative intensity of thermodynamic interactions. For example, a larger enthalpy change indicates a stronger thermodynamic interaction between the analytes and stationary phase, whereas a smaller enthalpy change indicates a weaker interaction. In addition, the degree of entropy change reflects the relative degrees of freedom of analytes in the stationary phase. A larger entropy change indicates that the analytes have fewer degrees of freedom in the stationary phase. The higher the degree of restriction, the closer the adsorption of the analytes and, thus, the longer the retention time. Thermodynamic interactions, such as metal affinity, π-π interactions, polarity, and chiral sites, can be rationally introduced into MOF structures by pre- or post-modifications depending on the target analytes. These tailored thermodynamic interactions create a favorable environment with subtle differences for efficient analyte separation. For example, MOF stationarity may require large conjugation centers to provide specific π-π interactions to separate benzenes. Chiral groups may be required in the MOF structure to provide sufficient interactions to separate chiral isomers. The kinetic diffusion rate of the analytes is another critical factor that affects the separation performance of MOFs. The diffusion coefficients of analytes in the stationary phase (Ds) can be used to evaluate their diffusion rates. The chromatographic dynamics equation illustrates that the chromatographic peak of analytes tends to be sharper and more symmetrical when the Ds is large, whereas a wider trailing peak may appear when the Ds is small. The Van Deemter equation also proves that a low Ds may lead to a high theoretical plate height and low column efficiency, whereas a high Ds may lead to a low theoretical plate height and increased column efficiency. Analyte diffusion can be significantly influenced by the pore size, shape, particle size, and packing mode of MOFs. For instance, an excessively small pore size results in increased mass transfer resistance, which affects the diffusion of analytes in the stationary phase, probably leading to serious peak trailing. Thus, a suitable pore size is required to enhance the kinetic diffusion of analytes and improve the separation performance of MOFs. Theoretically, the design of a high performance MOF stationary phase requires the creation of routes for the rapid diffusion of analytes. However, the separation ability of an MOF is determined by not only the kinetic diffusion rate of the analytes but also the thermodynamic interactions it provides. An excessively fast diffusion rate may lead to insufficient interactions between the analytes and MOFs, compromising their ability to effectively separate different analytes. The thermodynamic interactions and kinetic diffusion of analytes are synergistic and mutually essential. Therefore, this review concludes with research on the influence of both the thermodynamic interactions and kinetic diffusion of analytes on the performance of MOF stationary phases. Based on the findings of this review, we propose that high performance MOF stationary phases can be achieved by balancing the thermodynamic interactions and kinetic diffusion of analytes in these phases through the rational design of the MOF structure. We believe that this review provides useful guidelines for the design of high performance MOF stationary phases.

19.
Angiology ; 74(3): 242-251, 2023 03.
Article in English | MEDLINE | ID: mdl-35574924

ABSTRACT

This study describes an attempt to develop a user-friendly nomogram incorporating psychological factors to individually predict the risk of radial artery spasm. Patients consecutively recruited between June 2020 and June 2021 constituted the development cohort for retrospective analysis of the development of a prediction model. Least absolute shrinkage and selection operator regression combined with clinical significance was employed to screen out appropriate independent variables. The model's discrimination and calibration were subsequently evaluated and calibrated by using the C-index, receiver operating characteristic (ROC) curve, and calibration plot. Decision curve analysis was also performed to evaluate the net benefit with the nomogram, and internal validation was assessed using bootstrapping validation. The predictors included in the risk nomogram included "body mass index ," "anxiety score," "duration of interventional surgery," "latency time (time spent waiting in the catheterization laboratory)," "vascular circuity (substantial changes in the curvature of vessels)," and "puncture number." The derived model showed good discrimination with an area under the ROC curve of .77, a C-index of .771 (95% CI: .72-.822) and good calibration. Decision curve analysis indicated that the nomogram provided a better net benefit than the alternatives.


Subject(s)
Nomograms , Radial Artery , Humans , Coronary Angiography/adverse effects , Radial Artery/diagnostic imaging , Retrospective Studies , Body Mass Index
20.
Front Oncol ; 13: 1099624, 2023.
Article in English | MEDLINE | ID: mdl-36937390

ABSTRACT

Introduction: Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer kind. According to recent research, a fatty liver increases the risk of hepatocellular cancer. Nevertheless, the AMPK signaling pathway is crucial. In addition, 5'-AMP-activated protein kinase (AMPK) is strongly linked to alterations in the tumor microenvironment, such as inflammation, hypoxia, and aging. The objective of this study is to evaluate the impact of the AMPK signaling pathway on the progression of fatty liver to HCC. Methods: In this study, we established a mouse liver cancer model using high-fat diets and nano-nitrosamines (nano-DEN). In addition, we employed a transcriptomic technique to identify all mRNAs detected in liver samples at the 25th weekexpression of proteins linked with the LKB1-AMPK-mTOR signaling pathway, inflammation, aging, and hypoxia was studied in microarrays of liver cancer tissues from mice and humans. These proteins included p-AMPK, LKB1, mTOR, COX-2, ß-catenin, HMGB1, p16, and HIF-1α. Results: Data were collected at different times in the liver as well as in cancerous and paracancerous regions and analyzed by a multispectral imaging system. The results showed that most of the genes in the AMPK signaling pathway were downregulated. Prakk1 expression was upregulated compared to control group but downregulated in the cancerous regions compared to the paracancerous regions. Stk11 expression was downregulated in the cancerous regions. Mtor expression was upregulated in the cancerous regions. During liver cancer formation, deletion of LKB1 in the LKB1-AMPK-mTOR signaling pathway reduces phosphorylation of AMPK. It contributed to the upregulation of mTOR, which further led to the upregulation of HIF1α. In addition, the expression of ß-catenin, COX-2, and HMGB1 were upregulated, as well as the expression of p16 was downregulated. Discussion: These findings suggest that changes in the AMPK signaling pathway exacerbate the deterioration of disrupted energy metabolism, chronic inflammation, hypoxia, and cellular aging in the tumor microenvironment, promoting the development of fatty liver into liver cancer.

SELECTION OF CITATIONS
SEARCH DETAIL