Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chem Soc Rev ; 52(2): 601-662, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36149439

ABSTRACT

Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.


Subject(s)
Chemical Warfare Agents , Humans , Chemical Warfare Agents/analysis , Fluorescent Dyes
2.
Acta Pharmacol Sin ; 42(12): 2082-2093, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33654219

ABSTRACT

Sulfur mustard (SM) is a highly toxic chemical warfare agent that causes acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). There are no effective therapeutic treatments or antidotes available currently to counteract its toxic effects. Our previous study shows that bone marrow-derived mesenchymal stromal cells (BMSCs) could exert therapeutic effects against SM-induced lung injury. In this study, we explored the therapeutic potential of BMSC-derived exosomes (BMSC-Exs) against ALI and the underlying mechanisms. ALI was induced in mice by injection of SM (30 mg/kg, sc) at their medial and dorsal surfaces. BMSC-Exs (20 µg/kg in 200 µL PBS, iv) were injected for a 5-day period after SM exposure. We showed that BMSC-Exs administration caused a protective effect against pulmonary edema. Using a lung epithelial cell barrier model, BMSC-Exs (10, 20, 40 µg) dose-dependently inhibited SM-induced cell apoptosis and promoted the recovery of epithelial barrier function by facilitating the expression and relocalization of junction proteins (E-cadherin, claudin-1, occludin, and ZO-1). We further demonstrated that BMSC-Exs protected against apoptosis and promoted the restoration of barrier function against SM through upregulating G protein-coupled receptor family C group 5 type A (GPRC5A), a retinoic acid target gene predominately expressed in the epithelial cells of the lung. Knockdown of GPRC5A reduced the antiapoptotic and barrier regeneration abilities of BMSC-Exs and diminished their therapeutic effects in vitro and in vivo. BMSC-Exs-caused upregulation of GPRC5A promoted the expression of Bcl-2 and junction proteins via regulating the YAP pathway. In summary, BMSC-Exs treatment exerts protective effects against SM-induced ALI by promoting alveolar epithelial barrier repair and may be an alternative approach to stem cell-based therapy.


Subject(s)
Acute Lung Injury/therapy , Exosomes/transplantation , Mesenchymal Stem Cells/cytology , Signal Transduction/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Apoptosis/physiology , Cell Line , Epithelial Cells/metabolism , Gene Knockout Techniques , Lung/metabolism , Lung/pathology , Male , Mice, Inbred ICR , Mice, Knockout , Mustard Gas , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , YAP-Signaling Proteins/metabolism
3.
J Hazard Mater ; 472: 134604, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38759283

ABSTRACT

Of all chemical warfare agents (CWAs), only nerve and blood agents cause massive mortality at low concentrations. To better detect and discriminate nerve and blood agents, a reliable detection method is desirable. We report a series of fluorescent probes for nerve and blood agent detection. Among the tested probes, SR-Pip detected nerve and blood agents quickly (within 10 s for nerve agents and 1 min for blood agents). SR-Pip coupled with nerve agent produced a weak orange fluorescence with good sensitivity [limit of detection (LOD)= 5.5 µM]. Upon reaction with blood agent, the fluorescence of SR-Pip changed from orange fluorescence to blue fluorescence with detection limits as low as 9.6 nM. This probe effectively visualised different concentrations of nerve agents in living cells and mice. A portable test kit using SR-Pip instantly detected nerve and blood agents. To the best of our knowledge, SR-Pip is the first fluorescent probe for nerve and blood agent detection.


Subject(s)
Chemical Warfare Agents , Fluorescent Dyes , Nerve Agents , Animals , Fluorescent Dyes/chemistry , Nerve Agents/analysis , Nerve Agents/toxicity , Chemical Warfare Agents/analysis , Mice , Humans , Limit of Detection
4.
Phytochemistry ; 162: 232-240, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30953910

ABSTRACT

Five previously undescribed monoterpenoid indole alkaloids were isolated from the roots of Gelsemium elegans. Their structures with absolute configurations were elucidated by HRESIMS, X-ray diffraction, ECD spectra, and molecular modeling. 19,20-Epoxyhumantenine is a humantenine-type alkaloid with an epoxypropyl group at the C-20 position, (4R)-19-oxo-gelsevirine N4-oxide is a gelsemine-related alkaloid, and gelsedethenine is a gelsedine-type alkaloid with a butenyl group at the C-20 position. Moreover, 10,11-dimethoxy-N1-demethoxy-gelsemamide is an open-loop indole alkaloid and 11-demethoxy-gelsemazonamide is an aromatic azo-linked dimeric indole alkaloid. Among the five alkaloids, (4R)-19-oxo-gelsevirine N4-oxide and 10,11-dimethoxy-N1-demethoxy-gelsemamide exhibited significant inhibitory effects on nitric oxide production in lipopolysaccharide-induced RAW 264.7 macrophage cells, with IC50 values of 6.18 ±â€¯1.07 and 12.2 ±â€¯1.02 µM, respectively.


Subject(s)
Gelsemium/chemistry , Indole Alkaloids/chemistry , Animals , Indole Alkaloids/pharmacology , Inhibitory Concentration 50 , Mice , Models, Molecular , Molecular Conformation , Nitric Oxide/antagonists & inhibitors , RAW 264.7 Cells
5.
Sci Rep ; 4: 5870, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25070356

ABSTRACT

As one of three gasotransmitters, the fundamental signalling roles of hydrogen sulphide are receiving increasing attention. New tools for the accurate detection of hydrogen sulphide in cells and tissues are in demand to probe its biological functions. We report the p-nitrobenzyl-based ratiometric fluorescent probe RHP-2, which features a low detection limit, high selectivity and good photostability. The emission intensity ratios had a good linear relationship with the sulphide concentrations in PBS buffer and bovine serum. Our probe was applied to the ratiometric determination and imaging of endogenous H2S in living cells. Furthermore, RHP-2 was used as an effective tool to measure endogenous H2S in the mouse hippocampus. We observed a significant reduction in sulphide concentrations and downregulated expression of cystathionine ß-synthetase (CBS) mRNA and CBS protein in the mouse hippocampus in a chronic unpredictable mild stress (CUMS)-induced depression model. These data suggested that decreased concentrations of endogenous H2S may be involved in the pathogenesis of chronic stress depression.


Subject(s)
Carbamates/chemical synthesis , Depression/metabolism , Fluorescent Dyes/chemical synthesis , Hippocampus/metabolism , Hydrogen Sulfide/analysis , Molecular Probes/chemical synthesis , Naphthalimides/chemical synthesis , Stress, Psychological/metabolism , Animals , Cattle , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Depression/diagnosis , Depression/etiology , Depression/physiopathology , Disease Models, Animal , Down-Regulation , Gene Expression , Hippocampus/physiopathology , Humans , Hydrogen Sulfide/metabolism , Limit of Detection , MCF-7 Cells , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Spectrometry, Fluorescence/methods , Stress, Psychological/complications , Stress, Psychological/diagnosis , Stress, Psychological/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL