Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Phytopathology ; 108(1): 52-59, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28945522

ABSTRACT

Biological control is a promising approach to reduce plant diseases caused by nematodes. We tested the effect of the fungus Clonostachys rosea strain IK726 inoculation on nematode community composition in a naturally nematode infested soil in a pot experiment, and the effect of C. rosea on plant health. The numbers of plant-parasitic nematode genera extracted from soil and plant roots decreased by 40 to 73% when C. rosea was applied, while genera of nonparasitic nematodes were not affected. Soil inoculation of C. rosea increased fresh shoot weight and shoot length of wheat plants by 20 and 24%, respectively, while only shoot dry weight increased by 48% in carrots. Light microscopy of in vitro C. rosea-nematode interactions did not reveal evidence of direct parasitism. However, culture filtrates of C. rosea growing in potato dextrose broth, malt extract broth and synthetic nutrient broth exhibited toxicity toward nematodes and immobilized 57, 62, and 100% of the nematodes, respectively, within 48 h. This study demonstrates that C. rosea can control plant-parasitic nematodes and thereby improve plant growth. The most likely mechanism responsible for the antagonism is antibiosis through production of nematicidal compounds, rather than direct parasitism.


Subject(s)
Daucus carota/parasitology , Hypocreales/physiology , Nematoda/microbiology , Pest Control, Biological , Plant Diseases/prevention & control , Triticum/parasitology , Animals , Host-Pathogen Interactions , Nematoda/pathogenicity , Plant Diseases/microbiology , Plant Roots/microbiology , Plant Roots/parasitology , Soil/parasitology , Soil Microbiology
2.
Alcohol Clin Exp Res ; 41(5): 883-894, 2017 May.
Article in English | MEDLINE | ID: mdl-28226195

ABSTRACT

BACKGROUND: The liver is the major site for alcohol metabolism in the body and therefore the primary target organ for ethanol (EtOH)-induced toxicity. In this study, we investigated the in vitro response of human liver cells to different EtOH concentrations in a perfused bioartificial liver device that mimics the complex architecture of the natural organ. METHODS: Primary human liver cells were cultured in the bioartificial liver device and treated for 24 hours with medium containing 150 mM (low), 300 mM (medium), or 600 mM (high) EtOH, while a control culture was kept untreated. Gene expression patterns for each EtOH concentration were monitored using Affymetrix Human Gene 1.0 ST Gene chips. Scaled expression profiles of differentially expressed genes (DEGs) were clustered using Fuzzy c-means algorithm. In addition, functional classification methods, KEGG pathway mapping and also a machine learning approach (Random Forest) were utilized. RESULTS: A number of 966 (150 mM EtOH), 1,334 (300 mM EtOH), or 4,132 (600 mM EtOH) genes were found to be differentially expressed. Dose-response relationships of the identified clusters of co-expressed genes showed a monotonic, threshold, or nonmonotonic (hormetic) behavior. Functional classification of DEGs revealed that low or medium EtOH concentrations operate adaptation processes, while alterations observed for the high EtOH concentration reflect the response to cellular damage. The genes displaying a hormetic response were functionally characterized by overrepresented "cellular ketone metabolism" and "carboxylic acid metabolism." Altered expression of the genes BAHD1 and H3F3B was identified as sufficient to classify the samples according to the applied EtOH doses. CONCLUSIONS: Different pathways of metabolic and epigenetic regulation are affected by EtOH exposition and partly undergo hormetic regulation in the bioartificial liver device. Gene expression changes observed at high EtOH concentrations reflect in some aspects the situation of alcoholic hepatitis in humans.


Subject(s)
Ethanol/toxicity , Hepatocytes/drug effects , Hepatocytes/metabolism , Oxidative Stress/drug effects , Transcription, Genetic/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Oxidative Stress/physiology , Transcription, Genetic/physiology
3.
Biol Res ; 49(1): 34, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27464526

ABSTRACT

BACKGROUND: Cellular senescence is induced either internally, for example by replication exhaustion and cell division, or externally, for example by irradiation. In both cases, cellular damages accumulate which, if not successfully repaired, can result in senescence induction. Recently, we determined the transcriptional changes combined with the transition into replicative senescence in primary human fibroblast strains. Here, by γ-irradiation we induced premature cellular senescence in the fibroblast cell strains (HFF and MRC-5) and determined the corresponding transcriptional changes by high-throughput RNA sequencing. RESULTS: Comparing the transcriptomes, we found a high degree of similarity in differential gene expression in replicative as well as in irradiation induced senescence for both cell strains suggesting, in each cell strain, a common cellular response to error accumulation. On the functional pathway level, "Cell cycle" was the only pathway commonly down-regulated in replicative and irradiation-induced senescence in both fibroblast strains, confirming the tight link between DNA repair and cell cycle regulation. However, "DNA repair" and "replication" pathways were down-regulated more strongly in fibroblasts undergoing replicative exhaustion. We also retrieved genes and pathways in each of the cell strains specific for irradiation induced senescence. CONCLUSION: We found the pathways associated with "DNA repair" and "replication" less stringently regulated in irradiation induced compared to replicative senescence. The strong regulation of these pathways in replicative senescence highlights the importance of replication errors for its induction.


Subject(s)
Cellular Senescence/physiology , Fibroblasts/radiation effects , Aborted Fetus , Analysis of Variance , Cells, Cultured , Cellular Senescence/genetics , Cellular Senescence/radiation effects , DNA Damage , DNA Repair/radiation effects , DNA Replication/radiation effects , Down-Regulation/radiation effects , Fibroblasts/physiology , Gamma Rays , Gene Expression Profiling , Humans , Immunoblotting , Lung , Male , Sequence Analysis, RNA , Time Factors , Up-Regulation/radiation effects , beta-Galactosidase/metabolism
4.
Nature ; 439(7074): 331-5, 2006 Jan 19.
Article in English | MEDLINE | ID: mdl-16421571

ABSTRACT

The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution.


Subject(s)
Chromosomes, Human, Pair 8/genetics , Evolution, Molecular , Animals , Contig Mapping , DNA, Satellite/genetics , Defensins/genetics , Euchromatin/genetics , Female , Humans , Immunity, Innate/genetics , Male , Molecular Sequence Data , Multigene Family/genetics , Sequence Analysis, DNA
5.
Sci Rep ; 12(1): 15176, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071066

ABSTRACT

Previous spatio-temporal COVID-19 prediction models have focused on the prediction of subsequent number of cases, and have shown varying accuracy and lack of high geographical resolution. We aimed to predict trends in COVID-19 test positivity, an important marker for planning local testing capacity and accessibility. We included a full year of information (June 29, 2020-July 4, 2021) with both direct and indirect indicators of transmission, e.g. mobility data, number of calls to the national healthcare advice line and vaccination coverage from Uppsala County, Sweden, as potential predictors. We developed four models for a 1-week-window, based on gradient boosting (GB), random forest (RF), autoregressive integrated moving average (ARIMA) and integrated nested laplace approximations (INLA). Three of the models (GB, RF and INLA) outperformed the naïve baseline model after data from a full pandemic wave became available and demonstrated moderate accuracy. An ensemble model of these three models slightly improved the average root mean square error to 0.039 compared to 0.040 for GB, RF and INLA, 0.055 for ARIMA and 0.046 for the naïve model. Our findings indicate that the collection of a wide variety of data can contribute to spatio-temporal predictions of COVID-19 test positivity.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Sweden/epidemiology
6.
Am J Hum Genet ; 82(3): 763-71, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18304490

ABSTRACT

The exploration of copy-number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic makeup between twins derived from the same zygote represent an irrefutable example of somatic mosaicism. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype by using two platforms for genome-wide CNV analyses and showed that CNVs exist within pairs in both groups. These findings have an impact on our views of genotypic and phenotypic diversity in monozygotic twins and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool for identifying disease-predisposition loci. Our results also imply that caution should be exercised when interpreting disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics.


Subject(s)
Chromosomes, Human/genetics , Genetic Variation , Neurodegenerative Diseases/genetics , Twins, Monozygotic/genetics , DNA/chemistry , DNA/genetics , Female , Humans , Male , Oligonucleotide Array Sequence Analysis , Phenotype
7.
Int J Cancer ; 126(6): 1390-402, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-19821490

ABSTRACT

Urinary bladder cancer is a heterogeneous disease with tumors ranging from papillary noninvasive (stage Ta) to solid muscle infiltrating tumors (stage T2+). The risk of progression and death for the most frequent diagnosed type, Ta, is low, but the high incidence of recurrences has a significant effect on the patients' quality of life and poses substantial costs for health care systems. Consequently, the purpose of this study was to search for predictive factors of recurrence on the basis of genetic profiling. A clinically well characterized cohort of Ta bladder carcinomas, selected by the presence or absence of recurrences, was evaluated by an integrated analysis of DNA copy number changes and gene expression (clone-based 32K, respectively, U133Plus2.0 arrays). Only a few chromosomal aberrations have previously been defined in superficial bladder cancer. Surprisingly, the profiling of Ta tumors with a high-resolution array showed that DNA copy alterations are relatively common in this tumor type. Furthermore, we observed an overrepresentation of focal amplifications within high-grade and recurrent cases. Known (FGFR3, CCND1, MYC, MDM2) and novel candidate genes were identified within the loci. For example, MYBL2, a nuclear transcription factor involved in cell-cycle progression; YWHAB, an antiapoptotic protein; and SDC4, an important component of focal adhesions represent interesting candidates detected within two amplicons on chromosome 20, for which DNA amplification correlated with transcript up-regulation. The observed overrepresentation of amplicons within high-grade and recurrent cases may be clinically useful for the identification of patients who will benefit from a more aggressive therapy.


Subject(s)
Gene Amplification , Genetic Predisposition to Disease/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder/metabolism , 14-3-3 Proteins/genetics , Cell Cycle Proteins/genetics , Chromosome Aberrations , Comparative Genomic Hybridization , Cyclin D1/genetics , Female , Gene Dosage , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasm Recurrence, Local , Neoplasm Staging , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-myc/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Syndecan-4/genetics , Trans-Activators/genetics , Urinary Bladder/pathology , Urinary Bladder Neoplasms/pathology
8.
Genes Chromosomes Cancer ; 48(10): 897-907, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19603524

ABSTRACT

Neurofibromatosis Type I (NF1) is an autosomal dominant disorder characterized by the development of both benign and malignant tumors. The lifetime risk for developing a malignant peripheral nerve sheath tumor (MPNST) in NF1 patients is approximately 10% with poor survival rates. To date, the molecular basis of MPNST development remains unclear. Here, we report the first genome-wide and high-resolution analysis of DNA copy number alterations in MPNST using the 32K bacterial artificial chromosome microarray on a series of 24 MPNSTs and three neurofibroma samples. In the benign neurofibromas, apart from loss of one copy of the NF1 gene and copy number polymorphisms, no other changes were found. The profiles of malignant samples, however, revealed specific loss of chromosomal regions including 1p35-33, 1p21, 9p21.3, 10q25, 11q22-23, 17q11, and 20p12.2 as well as gain of 1q25, 3p26, 3q13, 5p12, 5q11.2-q14, 5q21-23, 5q31-33, 6p23-p21, 6p12, 6q15, 6q23-q24, 7p22, 7p14-p13, 7q21, 7q36, 8q22-q24, 14q22, and 17q21-q25. Copy number gains were more frequent than deletions in the MPNST samples (62% vs. 38%). The genes resident within common regions of gain were NEDL1 (7p14), AP3B1 (5q14.1), and CUL1 (7q36.1) and these were identified in >63% MPNSTs. The most frequently deleted locus encompassed CDKN2A, CDKN2B, and MTAP genes on 9p21.3 (33% cases). These genes have previously been implicated in other cancer conditions and therefore, should be considered for their therapeutic, prognostic, and diagnostic relevance in NF1 tumorigenesis.


Subject(s)
Comparative Genomic Hybridization/methods , Genes, Neurofibromatosis 1 , Nerve Sheath Neoplasms/genetics , Neurofibromatosis 1/genetics , Oligonucleotide Array Sequence Analysis/methods , Skin Neoplasms/genetics , Adult , Chromosome Aberrations , Chromosomes, Artificial, Bacterial , Female , Gene Dosage , Genome, Human , Humans , Male , Middle Aged
9.
Bioinformatics ; 24(6): 751-8, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18204059

ABSTRACT

MOTIVATION: Copy number profiling methods aim at assigning DNA copy numbers to chromosomal regions using measurements from microarray-based comparative genomic hybridizations. Among the proposed methods to this end, Hidden Markov Model (HMM)-based approaches seem promising since DNA copy number transitions are naturally captured in the model. Current discrete-index HMM-based approaches do not, however, take into account heterogeneous information regarding the genomic overlap between clones. Moreover, the majority of existing methods are restricted to chromosome-wise analysis. RESULTS: We introduce a novel Segmental Maximum A Posteriori approach, SMAP, for DNA copy number profiling. Our method is based on discrete-index Hidden Markov Modeling and incorporates genomic distance and overlap between clones. We exploit a priori information through user-controllable parameterization that enables the identification of copy number deviations of various lengths and amplitudes. The model parameters may be inferred at a genome-wide scale to avoid overfitting of model parameters often resulting from chromosome-wise model inference. We report superior performances of SMAP on synthetic data when compared with two recent methods. When applied on our new experimental data, SMAP readily recognizes already known genetic aberrations including both large-scale regions with aberrant DNA copy number and changes affecting only single features on the array. We highlight the differences between the prediction of SMAP and the compared methods and show that SMAP accurately determines copy number changes and benefits from overlap consideration.


Subject(s)
Algorithms , Artificial Intelligence , Chromosome Mapping/methods , Gene Dosage/genetics , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Base Sequence , Markov Chains , Molecular Sequence Data , Pattern Recognition, Automated/methods
10.
Clin Lung Cancer ; 20(4): 258-262.e1, 2019 07.
Article in English | MEDLINE | ID: mdl-30926355

ABSTRACT

BACKGROUND: The immunohistochemical analysis of programmed cell death ligand 1 (PD-L1) expression in tumor tissue of non-small-cell lung cancer patients has now been integrated in the diagnostic workup. Analysis is commonly done on small tissue biopsy samples representing a minimal fraction of the whole tumor. The aim of the study was to evaluate the correlation of PD-L1 expression on biopsy specimens with corresponding resection specimens. MATERIALS AND METHODS: In total, 58 consecutive cases with preoperative biopsy and resected tumor specimens were selected. From each resection specimen 2 tumor cores were compiled into a tissue microarray (TMA). Immunohistochemical staining with the antibody SP263 was performed on biopsy specimens, resection specimens (whole sections), as well as on the TMA. RESULTS: The proportion of PD-L1-positive stainings were comparable between the resection specimens (48% and 19%), the biopsies (43% and 17%), and the TMAs (47% and 14%), using cutoffs of 1% and 50%, respectively (P > .39 all comparisons). When the resection specimens were considered as reference, PD-L1 status differed in 16%/5% for biopsies and in 9%/9% for TMAs (1%/50% cutoff). The sensitivity of the biopsy analysis was 79%/82% and the specificity was 90%/98% at the 1%/50% cutoff. The Cohens κ value for the agreement between biopsy and tumor. was 0.70 at the 1% cutoff and 0.83 at the 50% cutoff. CONCLUSION: The results indicate a moderate concordance between the analysis of biopsy and whole tumor tissue, resulting in misclassification of samples in particular when the lower 1% cutoff was used. Clinicians should be aware of this uncertainty when interpreting PD-L1 reports for treatment decisions.


Subject(s)
Biomarkers, Tumor/metabolism , Biopsy/methods , Carcinoma, Non-Small-Cell Lung/diagnosis , Immunohistochemistry/methods , Lung Neoplasms/diagnosis , Programmed Cell Death 1 Receptor/metabolism , Tissue Array Analysis/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Pneumonectomy , Programmed Cell Death 1 Receptor/genetics , Reproducibility of Results , Sensitivity and Specificity
11.
Nat Commun ; 10(1): 2459, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31150008

ABSTRACT

The original version of this Article contained an error in the spelling of the author Jule Müller, which was incorrectly given as Julia Müller. Additionally, in Fig. 4a, the blue-red colour scale for fold change in ageing/disease regulation included a blue stripe in place of a red stripe at the right-hand end of the scale. These errors have been corrected in both the PDF and HTML versions of the Article.

12.
Hum Mutat ; 29(9): 1118-24, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18570184

ABSTRACT

Two major types of genetic variation are known: single nucleotide polymorphisms (SNPs), and a more recently discovered structural variation, involving changes in copy number (CNVs) of kilobase- to megabase-sized chromosomal segments. It is unknown whether CNVs arise in somatic cells, but it is, however, generally assumed that normal cells are genetically identical. We tested 34 tissue samples from three subjects and, having analyzed for each tissue < or =10(-6) of all cells expected in an adult human, we observed at least six CNVs, affecting a single organ or one or more tissues of the same subject. The CNVs ranged from 82 to 176 kb, often encompassing known genes, potentially affecting gene function. Our results indicate that humans are commonly affected by somatic mosaicism for stochastic CNVs, which occur in a substantial fraction of cells. The majority of described CNVs were previously shown to be polymorphic between unrelated subjects, suggesting that some CNVs previously reported as germline might represent somatic events, since in most studies of this kind, only one tissue is typically examined and analysis of parents for the studied subjects is not routinely performed. A considerable number of human phenotypes are a consequence of a somatic process. Thus, our conclusions will be important for the delineation of genetic factors behind these phenotypes. Consequently, biobanks should consider sampling multiple tissues to better address mosaicism in the studies of somatic disorders.


Subject(s)
Gene Dosage , Mosaicism , Polymorphism, Genetic , Adult , Chromosomes, Human , Genetic Predisposition to Disease , Genomics , Humans , Oligonucleotide Array Sequence Analysis , Organ Specificity , Tissue Distribution
13.
Hum Mutat ; 29(3): 398-408, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18058796

ABSTRACT

To further explore the extent of structural large-scale variation in the human genome, we assessed copy number variations (CNVs) in a series of 71 healthy subjects from three ethnic groups. CNVs were analyzed using comparative genomic hybridization (CGH) to a BAC array covering the human genome, using DNA extracted from peripheral blood, thus avoiding any culture-induced rearrangements. By applying a newly developed computational algorithm based on Hidden Markov modeling, we identified 1,078 autosomal CNVs, including at least two neighboring/overlapping BACs, which represent 315 distinct regions. The average size of the sequence polymorphisms was approximately 350 kb and involved in total approximately 117 Mb or approximately 3.5% of the genome. Gains were about four times more common than deletions, and segmental duplications (SDs) were overrepresented, especially in larger deletion variants. This strengthens the notion that SDs often define hotspots of chromosomal rearrangements. Over 60% of the identified autosomal rearrangements match previously reported CNVs, recognized with various platforms. However, results from chromosome X do not agree well with the previously annotated CNVs. Furthermore, data from single BACs deviating in copy number suggest that our above estimate of total variation is conservative. This report contributes to the establishment of the common baseline for CNV, which is an important resource in human genetics.


Subject(s)
Gene Dosage , Genetic Variation , Racial Groups/genetics , Algorithms , Asian People/genetics , Black People/genetics , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Human, X/genetics , Female , Gene Duplication , Gene Rearrangement , Genome, Human , Humans , Male , Markov Chains , Oligonucleotide Array Sequence Analysis , White People/genetics
14.
Nat Commun ; 9(1): 327, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382830

ABSTRACT

Disease epidemiology during ageing shows a transition from cancer to degenerative chronic disorders as dominant contributors to mortality in the old. Nevertheless, it has remained unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we report on the identification of a conserved transcriptomic signature of ageing based on gene expression data from four vertebrate species across four tissues. We find that ageing-associated transcriptomic changes follow trajectories similar to the transcriptional alterations observed in degenerative ageing diseases but are in opposite direction to the transcriptomic alterations observed in cancer. We confirm the existence of a similar antagonism on the genomic level, where a majority of shared risk alleles which increase the risk of cancer decrease the risk of chronic degenerative disorders and vice versa. These results reveal a fundamental trade-off between cancer and degenerative ageing diseases that sheds light on the pronounced shift in their epidemiology during ageing.


Subject(s)
Aging/genetics , Cardiovascular Diseases/genetics , Diabetes Mellitus/genetics , Neoplasms/genetics , Neurodegenerative Diseases/genetics , Transcriptome , Adolescent , Adult , Aged , Aged, 80 and over , Aging/metabolism , Aging/pathology , Animals , Brain/growth & development , Brain/metabolism , Cardiovascular Diseases/blood , Cardiovascular Diseases/pathology , Child , Child, Preschool , Chronic Disease , Diabetes Mellitus/blood , Diabetes Mellitus/pathology , Fundulidae/genetics , Fundulidae/growth & development , Fundulidae/metabolism , Gene Ontology , Genome, Human , Humans , Infant , Liver/growth & development , Liver/metabolism , Mice , Middle Aged , Molecular Sequence Annotation , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/pathology , Skin/growth & development , Skin/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism
15.
Cancer Res ; 65(7): 2653-61, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15805262

ABSTRACT

Meningiomas are common neoplasms of the meninges lining of the central nervous system. Deletions of 1p have been established as important for the initiation and/or progression of meningioma. The rationale of this array-CGH study was to characterize copy number imbalances of chromosome 1 in meningioma, using a full-coverage genomic microarray containing 2,118 distinct measurement points. In total, 82 meningiomas were analyzed, making this the most detailed analysis of chromosome 1 in a comprehensive series of tumors. We detected a broad range of aberrations, such as deletions and/or gains of various sizes. Deletions were the predominant finding and ranged from monosomy to a 3.5-Mb terminal 1p homozygous deletion. Although multiple aberrations were observed across chromosome 1, every meningioma in which imbalances were detected harbored 1p deletions. Tumor heterogeneity was also observed in three recurrent meningiomas, which most likely reflects a progressive loss of chromosomal segments at different stages of tumor development. The distribution of aberrations supports the existence of at least four candidate loci on chromosome 1, which are important for meningioma tumorigenesis. In one of these regions, our results already allow the analysis of a number of candidate genes. In a large series of cases, we observed an association between the presence of segmental duplications and deletion breakpoints, which suggests their role in the generation of these tumor-specific aberrations. As 1p is the site of the genome most frequently affected by tumor-specific aberrations, our results indicate loci of general importance for cancer development and progression.


Subject(s)
Chromosomes, Human, Pair 1/genetics , Gene Dosage , Genes, Tumor Suppressor , Meningeal Neoplasms/genetics , Meningioma/genetics , Chromosome Aberrations , DNA, Neoplasm/genetics , Gene Deletion , Humans , Loss of Heterozygosity , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Polymorphism, Genetic
16.
Cell Syst ; 2(2): 122-32, 2016 02 24.
Article in English | MEDLINE | ID: mdl-27135165

ABSTRACT

Mutations and genetic variability affect gene expression and lifespan, but the impact of variations in gene expression within individuals on their aging-related mortality is poorly understood. We performed a longitudinal study in the short-lived killifish, Nothobranchius furzeri, and correlated quantitative variations in gene expression during early adult life with lifespan. Shorter- and longer-lived individuals differ in their gene expression before the onset of aging-related mortality; differences in gene expression are more pronounced early in life. We identified mitochondrial respiratory chain complex I as a hub in a module of genes whose expression is negatively correlated with lifespan. Accordingly, partial pharmacological inhibition of complex I by the small molecule rotenone reversed aging-related regulation of gene expression and extended lifespan in N. furzeri by 15%. These results support the use of N. furzeri as a vertebrate model for identifying the protein targets, pharmacological modulators, and individual-to-individual variability associated with aging.


Subject(s)
Vertebrates , Animals , Cyprinodontiformes , Longitudinal Studies , RNA , Sequence Analysis, RNA
17.
Redox Biol ; 8: 192-8, 2016 08.
Article in English | MEDLINE | ID: mdl-26803480

ABSTRACT

Hydrogen sulfide (H2S) is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. Here we measured blood sulfide in the long-lived naked mole-rat and five other mammalian species considerably differing in lifespan and found a negative correlation between blood sulfide and maximum longevity residual. In addition, we show that the naked mole-rat cystathionine ß-synthase (CBS), an enzyme whose activity in the liver significantly contributes to systemic sulfide levels, has lower activity in the liver and is activated to a higher degree by S-adenosylmethionine compared to other species. These results add complexity to the understanding of the role of H2S in aging and call for detailed research on naked mole-rat transsulfuration.


Subject(s)
Aging/blood , Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/blood , S-Adenosylmethionine/metabolism , Aging/pathology , Animals , Cystathionine beta-Synthase/genetics , Diet , Liver/enzymology , Longevity/genetics , Methionine/metabolism , Mole Rats , Rats
18.
Eur J Hum Genet ; 24(7): 1041-8, 2016 07.
Article in English | MEDLINE | ID: mdl-26508567

ABSTRACT

Sepsis is the systemic inflammatory host response to infection. Cystathionine beta-synthase (CBS)-dependent homocysteine (Hcy) pathway was demonstrated to affect disease severity and mortality in patients with severe sepsis/septic shock. Independent studies identified a single-nucleotide polymorphism (SNP, rs6586282, hg19 chr21:g.44478497C>T) in intron 14 of the CBS-coding gene (CBS) associated with Hcy plasma levels. We aimed to describe the association of this SNP and variants of a splice donor-affecting variable-number tandem repeat (VNTR, NG_008938.1:g.22763_22793[16_22]) 243 bp downstream of rs6586282 with severe human sepsis. We analyzed the VNTR structure and genotyped variants of rs6586282 and a neighboring SNP (rs34758144, hg19 chr21:g.44478582G>A) in two case-control studies including patients with severe sepsis/septic shock from Germany (n=168) and Greece (n=237). In both studies, we consistently observed an association of CBS VNTR alleles with sepsis susceptibility. Risk linearly increased with number of tandem repeats (per allele odds ratio in the adjusted analysis 1.34; 95% confidence interval (CI)=1.17-1.55; P<0.001). Association had also been shown for rs34758144 whose risk allele is in linkage disequilibrium with one long VNTR allele (19 repeat). In contrast, we observed no evidence for an effect on 28-day survival in patients with severe sepsis/septic shock (per allele hazard ratio in the adjusted analysis for VNTR 1.10; 95% CI=0.95-1.28; P=0.20). In a minigene approach, we demonstrated alternative splicing in distinct VNTR alleles, which, however, was independent of the number of tandem units. In conclusion, there is no ordinary conjunction between human CBS and severe sepsis/septic shock, but CBS genotypes are involved in disease susceptibility.


Subject(s)
Cystathionine beta-Synthase/genetics , DNA Copy Number Variations , Polymorphism, Single Nucleotide , Shock, Septic/genetics , Aged , Alternative Splicing , Case-Control Studies , Cell Line, Tumor , Female , HEK293 Cells , Humans , Linkage Disequilibrium , Male , Middle Aged , Minisatellite Repeats , Shock, Septic/pathology
19.
Hum Mutat ; 26(6): 540-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16287142

ABSTRACT

Schwannomatosis is characterized by multiple peripheral and cranial nerve schwannomas that occur in the absence of bilateral 8th cranial nerve schwannomas. The latter is the main diagnostic criterion of neurofibromatosis type 2 (NF2), which is a related but distinct disorder. The genetic factors underlying the differences between schwannomatosis and NF2 are poorly understood, although available evidence implicates chromosome 22 as the primary location of the gene(s) of interest. To investigate this, we comprehensively profiled the DNA copy number in samples from sporadic and familial schwannomatosis, NF2, and a large cohort of normal controls. Using a tiling-path chromosome 22 genomic array, we identified two candidate regions of copy number variation, which were further characterized by a PCR-based array with higher resolution. The latter approach allows the detection of minute alterations in total genomic DNA, with as little as 1.5 kb per measurement point of nonredundant sequence on the array. In DNA derived from peripheral blood from a schwannomatosis patient and a sporadic schwannoma sample, we detected rearrangements of the immunoglobulin lambda (IGL) locus, which is unlikely to be due to a B-cell specific somatic recombination of IGL. Analysis of normal controls indicated that these IGL rearrangements were restricted to schwannomatosis/schwannoma samples. In the second candidate region spanning GSTT1 and CABIN1 genes, we observed a frequent copy number polymorphism at the GSTT1 locus. We further describe missense mutations in the CABIN1 gene that are specific to samples from schwannomatosis and NF2 and make this gene a plausible candidate for contributing to the pathogenesis of these disorders.


Subject(s)
Chromosome Aberrations , Chromosomes, Human, Pair 22/genetics , Genes, Neurofibromatosis 2 , Neurilemmoma/genetics , Neurofibromatosis 2/genetics , Adaptor Proteins, Signal Transducing , Calcineurin/genetics , Chromosome Mapping , Computational Biology , Diagnosis, Differential , Gene Dosage , Gene Rearrangement , Glutathione Transferase/genetics , Humans , Immunoglobulin lambda-Chains/genetics , Microarray Analysis , Mutation , Neurilemmoma/diagnosis , Neurofibromatosis 2/diagnosis , Phosphoproteins/genetics , Polymorphism, Genetic
20.
J Mol Med (Berl) ; 81(7): 443-51, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12830322

ABSTRACT

Neurofibromatosis type 2 (NF2) is an autosomal dominant cancer syndrome caused by the biallelic inactivation of the neurofibromin 2 tumor suppressor gene ( NF2). Current molecular diagnostic methods for NF2 involve the detection of point mutations and/or microdeletions across the 100-kb locus from 22q12. Despite the fact that NF2 gene inactivating deletions occur in 25-30% of NF2 patients, the available approaches for high-resolution and high-throughput detection of deletions are underdeveloped. This need for improved methodology for gene copy number analysis is especially apparent when compared to a variety of methods available for accurate detection of point mutations. The microarray-based form of comparative genomic hybridization has been previously applied in the high-resolution analysis of gene copy number variation across large genomic regions. In this study we apply a PCR-based, strictly sequence-defined, repeat-free approach for the preparation of a diagnostic microarray for the detection of disease-causing deletions in the NF2 gene. The methodology is based on the preselection of target DNA by excluding redundant sequence within the NF2 locus using bioinformatics. This approach allows a significant increase in the resolution of deletion detection. The current average resolution of analysis across the NF2 locus is 23 kb. Therefore this NF2 gene-specific microarray is the first high-resolution tool for detection of diagnostically significant gene copy number aberrations. This microarray should now be applied in the analysis of an extensive series of NF2 patients, and hence we would like to call for such samples.


Subject(s)
Gene Deletion , Genes, Neurofibromatosis 2 , Neurofibromatosis 2/genetics , Oligonucleotide Array Sequence Analysis/methods , Base Sequence , Chromosomes, Human, Pair 22/genetics , Codon/genetics , Cosmids , Humans , Neurofibromatosis 2/diagnosis , Nucleic Acid Hybridization , Polymerase Chain Reaction , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL