Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Molecules ; 29(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276610

ABSTRACT

In this work, three series of micro-sized heterometallic europium-containing terephthalate MOFs, (Eu1-xLnx)2bdc3·nH2O (Ln = La, Gd, Lu), are synthesized via an ultrasound-assisted method in an aqueous medium. La3+ and Gd3+-doped terephthalates are isostructural to Eu2bdc3·4H2O. Lu3+-doped compounds are isostructural to Eu2bdc3·4H2O with Lu contents lower than 95 at.%. The compounds that are isostructural to Lu2bdc3·2.5H2O are formed at higher Lu3+ concentrations for the (Eu1-xLux)2bdc3·nH2O series. All materials consist of micrometer-sized particles. The particle shape is determined by the crystalline phase. All the synthesized samples demonstrate an "antenna" effect: a bright-red emission corresponding to the 5D0-7FJ transitions of Eu3+ ions is observed upon 310 nm excitation into the singlet electronic excited state of terephthalate ions. The fine structure of the emission spectra is determined by the crystalline phase due to the different local symmetries of the Eu3+ ions in the different kinds of crystalline structures. The photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are equal to 11 ± 2% and 0.44 ± 0.01 ms, respectively, for the Ln2bdc3·4H2O structures. For the (Eu1-xLux)2bdc3·2.5H2O compounds, significant increases in the photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are observed, reaching 23% and 1.62 ms, respectively.

2.
Sensors (Basel) ; 23(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679606

ABSTRACT

Controlling oxygen content in the primary circuit of nuclear reactors is one of the key tasks needed to ensure the safe operation of nuclear power plants where lead-bismuth eutectic alloy (LBE) is used as a coolant. If the oxygen concentration is low, active corrosion of structural materials takes place; upon increase in oxygen content, slag accumulates due to the formation of lead oxide. The generally accepted method of measuring the oxygen content in LBE is currently potentiometry. The sensors for measuring oxygen activity (electrochemical oxygen sensors) are galvanic cells with two electrodes (lead-bismuth coolant serves as working electrode) separated by a solid electrolyte. Control of corrosion and slag accumulation processes in circuits exploring LBE as a coolant is also based on data obtained by electrochemical oxygen sensors. The disadvantages of this approach are the low efficiency and low sensitivity of control. The alternative, Impedance Spectroscopy (EIS) Sensors, are proposed for Real-Time Corrosion Monitoring in LBE system. Currently their applicability in static LBE at temperatures up to 600 °C is shown.


Subject(s)
Alloys , Bismuth , Corrosion , Alloys/chemistry , Oxygen
3.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768759

ABSTRACT

Membrane potential is a fundamental property of biological cells. Changes in membrane potential characterize a vast number of vital biological processes, such as the activity of neurons and cardiomyocytes, tumorogenesis, cell-cycle progression, etc. A common strategy to record membrane potential changes that occur in the process of interest is to utilize organic dyes or genetically-encoded voltage indicators with voltage-dependent fluorescence. Sensors are introduced into target cells, and alterations of fluorescence intensity are recorded with optical methods. Techniques that allow recording relative changes of membrane potential and do not take into account fluorescence alterations due to factors other than membrane voltage are already widely used in modern biological and biomedical studies. Such techniques have been reviewed previously in many works. However, in order to investigate a number of processes, especially long-term processes, the measured signal must be corrected to exclude the contribution from voltage-independent factors or even absolute values of cell membrane potential have to be evaluated. Techniques that enable such measurements are the subject of this review.


Subject(s)
Fluorescent Dyes , Neurons , Membrane Potentials/physiology , Cell Membrane/metabolism , Fluorescent Dyes/metabolism , Neurons/metabolism , Optical Imaging
4.
Molecules ; 28(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36903620

ABSTRACT

Luminescent, heterometallic terbium(III)-lutetium(III) terephthalate metal-organic frameworks (MOFs) were synthesized via direct reaction between aqueous solutions of disodium terephthalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted and concentrated solutions. For (TbxLu1-x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate) containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O (diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O phases due to absence of quenching from water molecules possessing high-energy O-H vibrational modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest PLQY among Tb-based MOFs, 95%.

5.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144501

ABSTRACT

A new series of luminescent heterometallic europium(III)-lutetium(III) terephthalate metal-organic frameworks, namely (EuxLu1-x)2bdc3·nH2O, was synthesized using a direct reaction in a water solution. At the Eu3+ concentration of 1-40 at %, the MOFs were formed as a binary mixture of the (EuxLu1-x)2bdc3 and (EuxLu1-x)2bdc3·4H2O crystalline phases, where the Ln2bdc3·4H2O crystalline phase was enriched by europium(III) ions. At an Eu3+ concentration of more than 40 at %, only one crystalline phase was formed: (EuxLu1-x)2bdc3·4H2O. All MOFs containing Eu3+ exhibited sensitization of bright Eu3+-centered luminescence upon the 280 nm excitation into a 1ππ* excited state of the terephthalate ion. The fine structure of the emission spectra of Eu3+ 5D0-7FJ (J = 0-4) significantly depended on the Eu3+ concentration. The luminescence quantum yield of Eu3+ was significantly larger for Eu-Lu terephthalates containing a low concentration of Eu3+ due to the absence of Eu-Eu energy migration and the presence of the Ln2bdc3 crystalline phase with a significantly smaller nonradiative decay rate compared to the Ln2bdc3·4H2O.

6.
Int J Mol Sci ; 22(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34884976

ABSTRACT

Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow to adjust these characteristics in a range limited by the azobenzene/tetraethyl ammonium scaffold. The aim of the current study is to find the scope and limitations for the design of ATPLs with specific spectral and kinetic properties by introducing para substituents with different electronic effects. To perform this task we synthesized ATPLs with various electron acceptor and electron donor functional groups and studied their spectral and kinetic properties using flash photolysis and conventional spectroscopy techniques as well as quantum chemical modeling. As a result, we obtained diagrams that describe correlations between spectral and kinetic properties of ATPLs (absorption maxima of E and Z isomers of ATPLs, the thermal lifetime of their Z form) and both the electronic effect of substituents described by Hammett constants and structural parameters obtained from quantum chemical calculations. The provided results can be used for the design of ATPLs with properties that are optimal for photopharmacological applications.


Subject(s)
Azo Compounds/chemistry , Potassium Channel Blockers/chemistry , Quantum Theory , Tetraethylammonium/chemistry , Thermodynamics , Chemical Phenomena , Kinetics , Stereoisomerism
7.
Phys Chem Chem Phys ; 22(32): 18114-18123, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32761024

ABSTRACT

Quantum mechanics/molecular mechanics (QM/MM) models are a widely used tool to obtain detailed insight into the properties and functioning of proteins. The outcome of QM/MM studies heavily depends on the quality of the applied QM/MM model. Prediction and right placement of internal water molecules in protein cavities is one of the critical parts of any QM/MM model construction. Herein, we performed a systematic study of four protein hydration algorithms. We tested these algorithms for their ability to predict X-ray-resolved water molecules for a set of membrane photosensitive rhodopsin proteins, as well as the influence of the applied water placement algorithms on the QM/MM calculated absorption maxima (λmax) of these proteins. We used 49 rhodopsins and their intermediates with available X-ray structures as the test set. We found that a proper choice of hydration algorithms and setups is needed to predict functionally important water molecules in the chromophore-binding cavity of rhodopsins, such as the water cluster in the N-H region of bacteriorhodopsin or two water molecules in the binding pocket of bovine visual rhodopsin. The QM/MM calculated λmax of rhodopsins is also quite sensitive to the applied protein hydration protocols. The best methodology allows obtaining an 18.0 nm average value for the absolute deviation of the calculated λmax from the experimental λmax. Although the major effect of water molecules on λmax originates from the water molecules located in the binding pocket, the water molecules outside the binding pocket also affect the calculated λmax mainly by causing a reorganization of the protein structure. The results reported in this study can be used for the evaluation and further development of hydration methodologies, in general, and rhodopsin QM/MM models, in particular.

8.
J Chem Phys ; 149(20): 204313, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30501230

ABSTRACT

The photodissociation dynamics of CH3I and CH2ClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide m/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

9.
J Phys Chem A ; 120(11): 1833-44, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26901567

ABSTRACT

Photochemistry of copper(II) monochlorocomplexes in methanol and acetonitrile solutions is studied by UV-pump/broadband deep-UV-to-near-IR probe femtosecond transient absorption spectroscopy. Upon 255 and 266 nm excitation, the complexes in acetonitrile and methanol, respectively, are promoted to the excited ligand-to-metal charge transfer (LMCT) state, which has a short (sub-250 fs) lifetime. From the LMCT state, the complexes decay via internal conversion to lower-lying ligand field (LF) d-d excited states or the vibrationally hot ground electronic state. A minor fraction of the excited complexes relaxes to the LF electronic excited states, which are relatively long-lived with lifetimes >1 ns. Also, in methanol solutions, about 3% of the LMCT-excited copper(II) monochlorocomplexes dissociate forming copper(I) solvatocomplexes and chlorine atoms, which then further react forming long-lived photoproducts. In acetonitrile, about 50% of the LMCT-excited copper(II) monochlorocomplexes dissociate forming radical and ionic products in a ratio of 3:2. Another minor process observed following excitation only in methanol solutions is the re-equilibration between several forms of the copper(II) ground-state complexes present in solutions. This re-equilibration occurs on a time scale from sub-nanoseconds to nanoseconds.

10.
Chemistry ; 21(3): 1237-50, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25382590

ABSTRACT

A series of covalently linked axially symmetric porphyrin-fullerene dyads with a rigid pyrrolo[3,4-c]pyrrolic linker enabling a fixed and orthogonal arrangement of the chromophores has been synthesized and studied by means of transient absorption spectroscopy and cyclic voltammetry. The lifetime of the charge-separated state has been found to depend on the substituents on the porphyrin core, reaching up to 4 µs for a species with meso-(p-MeOC6H4) substituents. The ground and excited electronic states of model compounds have been calculated at the DFT and TD-DFT B3LYP(6-31G(d)) levels of theory and analyzed with regard to the effect of the substituent on the stabilization of the charge-separated state in the porphyrin-fullerene ensemble with a view to explaining the observed dependence.

11.
Beilstein J Org Chem ; 11: 504-13, 2015.
Article in English | MEDLINE | ID: mdl-25977725

ABSTRACT

The 1,3-dipolar cycloaddition of acyclic 2-diazo-1,3-dicarbonyl compounds (DDC) and thioketones preferably occurs with Z,E-conformers and leads to the formation of transient thiocarbonyl ylides in two stages. The thermodynamically favorable further transformation of C=S ylides bearing at least one acyl group is identified as the 1,5-electrocyclization into 1,3-oxathioles. However, in the case of diazomalonates, the dominating process is 1,3-cyclization into thiiranes followed by their spontaneous desulfurization yielding the corresponding alkenes. Finally, carbocyclic diazodiketones are much less reactive under similar conditions due to the locked cyclic structure and are unfavorable for the 1,3-dipolar cycloaddition due to the Z,Z-conformation of the diazo molecule. This structure results in high, positive values of the Gibbs free energy change for the first stage of the cycloaddition process.

12.
J Am Chem Soc ; 135(9): 3423-38, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23339714

ABSTRACT

Oxidative damage to purine nucleic acid bases proceeds through quinoidal intermediates derived from their corresponding 8-oxo-7,8-dihydropurine bases. Oxidation studies of 8-oxo-7,8-dihyroadenosine and 8-oxo-7,8-dihydroinosine indicate that these quinoidal species can produce stable cross-links with a wide variety of nucleophiles in the 2-positions of the purines. An azide precursor for the adenosine iminoquinone has been synthesized and applied in ultrafast transient absorption spectroscopic studies. Thus, the adenosine iminoquinone can be observed directly, and its susceptibility to nucleophilic attack with various nucleophiles as well as the stability of the resulting cross-linked species have been evaluated. Finally, these observations indicate that this azide might be a very useful photoaffinity labeling agent, because the reactive intermediate, adenosine iminoquinone, is such a good mimic for the universal purine base adenosine.


Subject(s)
Adenosine/chemistry , Inosine/chemistry , Purines/chemistry , Quinones/chemistry , Molecular Structure , Oxidation-Reduction , Spectrum Analysis
13.
Materials (Basel) ; 16(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005154

ABSTRACT

The conversion of metal-organic frameworks (MOFs) into advanced functional materials offers a promising route for producing unique nanomaterials. MOF-derived systems have the potential to overcome the drawbacks of MOFs, such as low electrical conductivity and poor structural stability, which have hindered their real-world applications in certain cases. In this study, laser scribing was used for pyrolysis of a Cu-based MOF ([Cu4{1,4-C6H4(COO)2}3(4,4'-bipy)2]n) to synthesize a Cu-CuO@C composite on the surface of a screen-printed electrode (SPE). Scanning electron microscopy, X-ray diffractometry, and Energy-dispersive X-ray spectroscopy were used for the investigation of the morphology and composition of the fabricated electrodes. The electrochemical properties of Cu-CuO@C/SPE were studied by cyclic voltammetry and differential pulse voltammetry. The proposed flexible electrochemical Cu-CuO@C/SPE sensor for the simultaneous detection of hydroquinone and catechol exhibited good sensitivity, broad linear range (1-500 µM), and low limits of detection (0.39 µM for HQ and 0.056 µM for CT).

14.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984038

ABSTRACT

The series of luminescent NaYF4:Sm3+ nano- and microcrystalline materials co-doped by La3+, Gd3+, and Lu3+ ions were synthesized by hydrothermal method using rare earth chlorides as the precursors and citric acid as a stabilizing agent. The phase composition of synthesized compounds was studied by PXRD. All synthesized materials except ones with high La3+ content (where LaF3 is formed) have a ß-NaYF4 crystalline phase. SEM images demonstrate that all particles have shape of hexagonal prisms. The type and content of doping REE significantly effect on the particle size. Upon 400 nm excitation, phosphors exhibit distinct emission peaks in visible part of the spectrum attributed to 4G5/2→6HJ transitions (J = 5/2-11/2) of Sm3+ ion. Increasing the samarium (III) content results in concentration quenching by dipole-dipole interactions, the optimum Sm3+concentration is found to be of 2%. Co-doping by non-luminescent La3+, Gd3+ and Lu3+ ions leads to an increase in emission intensity. This effect was explained from the Sm3+ local symmetry point of view.

15.
J Phys Chem A ; 116(11): 2791-9, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22122525

ABSTRACT

Ultrafast transient absorption spectra in the deep to near UV range (212-384 nm) were measured for the [Cu(II)(MeOH)(5)Cl](+) complexes in methanol following 255-nm excitation of the complex into the ligand-to-metal charge-transfer excited state. The electronically excited complex undergoes sub-200 fs radiationless decay, predominantly via back electron transfer, to the hot electronic ground state followed by fast vibrational relaxation on a 0.4-4 ps time scale. A minor photochemical channel is Cu-Cl bond dissociation, leading to the reduction of copper(II) to copper(I) and the formation of MeOH·Cl charge-transfer complexes. The depletion of ground-state [Cu(II)(MeOH)(5)Cl](+) perturbs the equilibrium between several forms of copper(II) complexes present in solution. Complete re-equilibration between [Cu(II)(MeOH)(5)Cl](+) and [Cu(II)(MeOH)(4)Cl(2)] is established on a 10-500 ps time scale, slower than methanol diffusion, suggesting that the involved ligand exchange mechanism is dissociative.


Subject(s)
Chlorides/chemistry , Copper/chemistry , Methanol/chemistry , Photochemical Processes , Electrons , Kinetics , Ligands , Molecular Structure , Oxidation-Reduction , Quantum Theory , Spectrum Analysis , Static Electricity , Thermodynamics , Time Factors , Ultraviolet Rays , Vibration
16.
Biosensors (Basel) ; 12(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35884330

ABSTRACT

Copper is an inexpensive material that has found wide application in electronics due to its remarkable electric properties. However, the high toxicity of both copper and copper oxide imposes restrictions on the application of this metal as a material for bioelectronics. One way to increase the biocompatibility of pure copper while keeping its remarkable properties is to use copper-based composites. In the present study, we explored a new copper-ruthenium composite as a potential biocompatible material for bioelectrodes. Sample electrodes were obtained by subsequent laser deposition of copper and ruthenium on glass plates from a solution containing salts of these metals. The fabricated Cu-Ru electrodes exhibit high effective area and their impedance properties can be described by simple R-CPE equivalent circuits that make them perspective for sensing applications. Finally, we designed a simple impedance cell-based biosensor using this material that allows us to distinguish between dead and alive HeLa cells.


Subject(s)
Biosensing Techniques , Ruthenium , Copper , Electric Impedance , Electrodes , HeLa Cells , Humans , Lasers
17.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080009

ABSTRACT

Two series of ß-NaYF4:Ln3+ nanoparticles (Ln = La-Nd, Sm-Lu) containing 20 at. % and 40 at. % of Ln3+ with well-defined morphology and size were synthesized via a facile citric-acid-assisted hydrothermal method using rare-earth chlorides as the precursors. The materials were composed from the particles that have a shape of uniform hexagonal prisms with an approximate size of 80-1100 nm. The mean diameter of NaYF4:Ln3+ crystals non-monotonically depended on the lanthanide atomic number and the minimum size was observed for Gd3+-doped materials. At the same time, the unit cell parameters decreased from La to Lu according to XRD data analysis. The diameter-to-length ratio increased from La to Lu in both studied series. The effect of the doping lanthanide(III) ion nature on particle size and shape was explained in terms of crystal growth dynamics. This study reports the correlation between the nanoparticle morphologies and the type and content of doping lanthanide ions. The obtained results shed light on the understanding of intrinsic factors' effect on structural features of the nanocrystalline materials.

18.
J Phys Chem B ; 125(26): 7213-7221, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34170695

ABSTRACT

Ultrafast excited-state dynamics of CuBr3- complex was studied in acetonitrile and dichloromethane solutions using femtosecond transient absorption spectroscopy with 18 fs temporal resolution and quantum-chemical DFT calculations. Upon 640 nm excitation, the CuBr3- complex is promoted to the ligand-to-metal charge transfer (LMCT) state, which then shortly undergoes internal conversion into the vibrationally hot ligand field (LF) excited state with time constants of 30 and 40 fs in acetonitrile and dichloromethane, respectively. The LF state nonradiatively relaxes into the ground state in 2.6 and 7.3 ps in acetonitrile and dichloromethane, respectively. Internal conversion of the LF state is accompanied by vibrational relaxation that occurs on the same time scale. Based on the analysis of coherent oscillations and quantum-chemical calculations, the predominant forms of the CuBr3- complex in acetonitrile and dichloromethane solutions were revealed. In acetonitrile, the CuBr3- complex exists as [CuBr3(CH3CN)2]-, whereas three forms of this complex, [CuBr3CH2Cl2]-, [CuBr3(CH2Cl2)2]-, and [CuBr3(CH2Cl2)3]-, are present in equilibrium in dichloromethane.


Subject(s)
Vibration , Ligands , Spectrum Analysis
19.
Materials (Basel) ; 14(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34639944

ABSTRACT

Comprehensive study of the structure and bonding of disodium, dipotassium and diammonium di-o-phthalatocuprates(II) dihydrates has been undertaken. The crystal structure of ammonium o-phthalatocuprate has been determined. The identity of structures of phthalatocuprate chains in potassium and ammonium salts has been revealed. Vibrational spectra of all three compounds have been recorded, and the assignment of vibrational bands has been made. Force field calculations have shown a minor effect of outer-sphere cations (Na+, K+, NH4+) on both intraligand (C-O) and metal-ligand bond strengths. Synthesized compounds have been tested as electrochemical sensors on D-glucose, dopamine and paracetamol. Their sensitivity to analytes varied in the order of Na+ > K+ > NH4+. This effect has been explained by the more pronounced steric hindrance of copper ions in potassium and ammonium salts.

20.
ACS Omega ; 6(28): 18099-18109, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34308043

ABSTRACT

We investigated the influence of morphology of Ni microstructures modified with Au and Pt on their cell biocompatibility and electrocatalytic activity toward non-enzymatic glucose detection. Synthesis and modification were carried out using a simple and inexpensive approach based on the method of laser-induced deposition of metal microstructures from a solution on the surface of various dielectrics. Morphological analysis of the fabricated materials demonstrated that the surface of the Ni electrode has a hierarchical structure with large-scale 10 µm pores and small-scale 10 nm irregularities. In turn, the Ni-Pt surface has large-scale cavities, small-scale pores (1-1.5 µm), and a few tens of nanometer particles opposite to Ni-Au that reveals no obvious hierarchical structure. These observations were supported by impedance spectroscopy confirming the hierarchy of the surface topography of Ni and Ni-Pt structures. We tested the biocompatibility of the fabricated Ni-based electrodes with the HeLa cells. It was shown that the Ni-Au electrode has a much better cell adhesion than Ni-Pt with a more complex morphology. On the contrary, porous Ni and Ni-Pt electrodes with a more developed surface area than that of Ni-Au have better catalytic performance toward enzymeless glucose sensing, revealing greater sensitivity, selectivity, and stability. In this regard, modification of Ni with Pt led to the most prominent results providing rather good glucose detection limits (0.14 and 0.19 µA) and linear ranges (10-300 and 300-1500 µA) as well as the highest sensitivities of 18,570 and 2929 µA mM-1 cm-2. We also proposed some ideas to clarify the observed behavior and explain the influence of morphology of the fabricated electrodes on their electrocatalytic activity and biocompatibility.

SELECTION OF CITATIONS
SEARCH DETAIL