Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nature ; 627(8003): 416-423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418872

ABSTRACT

Permanent epigenetic silencing using programmable editors equipped with transcriptional repressors holds great promise for the treatment of human diseases1-3. However, to unlock its full therapeutic potential, an experimental confirmation of durable epigenetic silencing after the delivery of transient delivery of editors in vivo is needed. To this end, here we targeted Pcsk9, a gene expressed in hepatocytes that is involved in cholesterol homeostasis. In vitro screening of different editor designs indicated that zinc-finger proteins were the best-performing DNA-binding platform for efficient silencing of mouse Pcsk9. A single administration of lipid nanoparticles loaded with the editors' mRNAs almost halved the circulating levels of PCSK9 for nearly one year in mice. Notably, Pcsk9 silencing and accompanying epigenetic repressive marks also persisted after forced liver regeneration, further corroborating the heritability of the newly installed epigenetic state. Improvements in construct design resulted in the development of an all-in-one configuration that we term evolved engineered transcriptional repressor (EvoETR). This design, which is characterized by a high specificity profile, further reduced the circulating levels of PCSK9 in mice with an efficiency comparable with that obtained through conventional gene editing, but without causing DNA breaks. Our study lays the foundation for the development of in vivo therapeutics that are based on epigenetic silencing.


Subject(s)
Epigenesis, Genetic , Epigenome , Gene Editing , Gene Silencing , Animals , Mice , Cholesterol/metabolism , Epigenesis, Genetic/genetics , Epigenome/genetics , Gene Editing/methods , Hepatocytes/metabolism , Liver/metabolism , Liver Regeneration , Nanoparticles , Proprotein Convertase 9/blood , Proprotein Convertase 9/deficiency , Proprotein Convertase 9/genetics , Repressor Proteins/administration & dosage , Repressor Proteins/metabolism , Zinc Fingers
2.
Am J Hum Genet ; 108(8): 1512-1525, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34242570

ABSTRACT

The pathogenic significance of nucleotide variants commonly relies on nucleotide position within the gene, with exonic changes generally attributed to quantitative or qualitative alteration of protein biosynthesis, secretion, activity, or clearance. However, these changes may exert pleiotropic effects on both protein biology and mRNA splicing due to the overlapping of the amino acid and splicing codes, thus shaping the disease phenotypes. Here, we focused on hemophilia A, in which the definition of F8 variants' causative role and association to bleeding phenotypes is crucial for proper classification, genetic counseling, and management of affected individuals. We extensively characterized a large panel of hemophilia A-causing variants (n = 30) within F8 exon 19 by combining and comparing in silico and recombinant expression analyses. We identified exonic variants with pleiotropic effects and dissected the altered protein features of all missense changes. Importantly, results from multiple prediction algorithms provided qualitative results, while recombinant assays allowed us to correctly infer the likely phenotype severity for 90% of variants. Molecular characterization of pathogenic variants was also instrumental for the development of tailored correction approaches to rescue splicing affecting variants or missense changes impairing protein folding. A single engineered U1snRNA rescued mRNA splicing of nine different variants and the use of a chaperone-like drug resulted in improved factor VIII protein secretion for four missense variants. Overall, dissection of the molecular mechanisms of a large panel of HA variants allowed precise classification of HA-affected individuals and favored the development of personalized therapeutic approaches.


Subject(s)
Exons , Factor VIII/genetics , Factor VIII/metabolism , Hemophilia A/pathology , Mutation , RNA Splicing , RNA, Messenger/genetics , Computational Biology , Hemophilia A/genetics , Hemophilia A/metabolism , Humans , Phenotype , Protein Biosynthesis , RNA, Messenger/metabolism
4.
Haematologica ; 108(6): 1544-1554, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36700401

ABSTRACT

Hemophilia A (HA) cell therapy approaches in pediatric individuals require suitable factor (F)VIII-producing cells for stable engraftment. Liver sinusoidal endothelial cells (LSEC) and hematopoietic stem cells (HSC) have been demonstrated to be suitable for the treatment of adult HA mice. However, after transplantation in busulfan (BU)-conditioned newborn mice, adult LSEC/HSC cannot efficiently engraft, while murine fetal liver (FL) hemato/vascular cells from embryonic day 11-13 of gestation (E11-E13), strongly engraft the hematopoietic and endothelial compartments while also secreting FVIII. Our aim was to investigate the engraftment of FL cells in newborn HA mice to obtain a suitable "proof of concept" for the development of a new HA treatment in neonates. Hence, we transplanted FL E11 or E13 cells and adult bone marrow (BM) cells into newborn HA mice with or without BU preconditioning. Engraftment levels and FVIII activity were assessed starting from 6 weeks after transplantation. FL E11-E13+ BU transplanted newborns reached up to 95% engraftment with stable FVIII activity levels observed for 16 months. FL E13 cells showed engraftment ability even in the absence of BU preconditioning, while FL E11 cells did not. BM BU transplanted newborn HA mice showed high levels of engraftment; nevertheless, in contrast to FL cells, BM cells cannot engraft HA newborns in BU non-conditioning regimen. Finally, none of the transplanted mice developed anti-FVIII antibodies. Overall, this study sheds some light on the therapeutic potential of healthy FL cells in the cure of HA neonatal/pediatric patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hemophilia A , Mice , Animals , Hemophilia A/therapy , Endothelial Cells , Liver , Hematopoietic Stem Cells , Stem Cell Transplantation , Busulfan , Mice, Inbred C57BL
5.
Haematologica ; 106(6): 1624-1635, 2021 06 01.
Article in English | MEDLINE | ID: mdl-32467137

ABSTRACT

A major challenge in the development of a gene therapy for hemophilia A (HA) is the selection of cell type- or tissue-specific promoters to ensure factor VIII (FVIII) expression without eliciting an immune response. As liver sinusoidal endothelial cells (LSECs) are the major FVIII source, understanding the transcriptional F8 regulation in these cells would help optimize the minimal F8 promoter (pF8) to efficiently drive FVIII expression. In silico analyses predicted several binding sites (BS) for the E26 transformation-specific (Ets) transcription factors Ets-1 and Ets-2 in the pF8. Reporter assays demonstrated a significant up-regulation of pF8 activity by Ets-1 or Ets-1/Est-2 combination, while Ets2 alone was ineffective. Moreover, Ets-1/Ets-2-DNA binding domain mutants (DBD) abolished promoter activation only when the Ets-1 DBD was removed, suggesting that pF8 up-regulation may occur through Ets-1/Ets-2 interaction with Ets-1 bound to DNA. pF8 carrying Ets-BS deletions unveiled two Ets-BS essential for pF8 activity and response to Ets overexpression. Lentivirus-mediated delivery of GFP or FVIII cassettes driven by the shortened promoters led to GFP expression mainly in endothelial cells in the liver and to long-term FVIII activity without inhibitor formation in HA mice. These data strongly support the potential application of these promoters in HA gene therapy.


Subject(s)
Factor VIII , Hemophilia A , Animals , Endothelial Cells , Factor VIII/genetics , Genetic Therapy , Hemophilia A/genetics , Hemophilia A/therapy , Lentivirus/genetics , Mice
6.
J Hepatol ; 72(6): 1159-1169, 2020 06.
Article in English | MEDLINE | ID: mdl-31954205

ABSTRACT

BACKGROUND & AIMS: Only limited therapeutic options are currently available for hepatocellular carcinoma (HCC), making the development of effective alternatives essential. Based on the recent finding that systemic or local hypothyroidism is associated with HCC development in humans and rodents, we investigated whether the thyroid hormone triiodothyronine (T3) could inhibit the progression of HCCs. METHODS: Different rat and mouse models of hepatocarcinogenesis were investigated. The effect of T3 on tumorigenesis and metabolism/differentiation was evaluated by transcriptomic analysis, quantitative reverse transcription PCR, immunohistochemistry, and enzymatic assay. RESULTS: A short treatment with T3 caused a shift in the global expression profile of the most aggressive preneoplastic nodules towards that of normal liver. This genomic reprogramming preceded the disappearance of nodules and involved reprogramming of metabolic genes, as well as pro-differentiating transcription factors, including Kruppel-like factor 9, a target of the thyroid hormone receptor ß (TRß). Treatment of HCC-bearing rats with T3 strongly reduced the number and burden of HCCs. Reactivation of a local T3/TRß axis, a switch from Warburg to oxidative metabolism and loss of markers of poorly differentiated hepatocytes accompanied the reduced burden of HCC. This effect persisted 1 month after T3 withdrawal, suggesting a long-lasting effect of the hormone. The antitumorigenic effect of T3 was further supported by its inhibitory activity on cell growth and the tumorigenic ability of human HCC cell lines. CONCLUSIONS: Collectively, these findings suggest that reactivation of the T3/TRß axis induces differentiation of neoplastic cells towards a more benign phenotype and that T3 or its analogs, particularly agonists of TRß, could be useful tools in HCC therapy. LAY SUMMARY: Hepatocellular carcinoma (HCC) represents an important challenge for global health. Recent findings showed that systemic or local hypothyroidism is associated with HCC development. In rat models, we showed that administration of the thyroid hormone T3 impaired HCC progression, even when given at late stages. This is relevant from a translational point of view as HCC is often diagnosed at an advanced stage when it is no longer amenable to curative treatments. Thyroid hormones and/or thyromimetics could be useful for the treatment of patients with HCC.


Subject(s)
Anticarcinogenic Agents/administration & dosage , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Differentiation/drug effects , Disease Progression , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Triiodothyronine/administration & dosage , Aged , Animals , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Female , Gene Expression Profiling , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Male , Mice , Mice, Nude , Middle Aged , Rats , Rats, Inbred F344 , Rats, Wistar , Thyroid Hormone Receptors beta/metabolism , Transcriptome , Triiodothyronine/metabolism
7.
Mol Ther ; 25(8): 1815-1830, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28552407

ABSTRACT

Hemophilia A (HA) is an X-linked bleeding disease caused by factor VIII (FVIII) deficiency. We previously demonstrated that FVIII is produced specifically in liver sinusoid endothelial cells (LSECs) and to some degree in myeloid cells, and thus, in the present work, we seek to restrict the expression of FVIII transgene to these cells using cell-specific promoters. With this approach, we aim to limit immune response in a mouse model by lentiviral vector (LV)-mediated gene therapy encoding FVIII. To increase the target specificity of FVIII expression, we included miRNA target sequences (miRTs) (i.e., miRT-142.3p, miRT-126, and miRT-122) to silence expression in hematopoietic cells, endothelial cells, and hepatocytes, respectively. Notably, we report, for the first time, therapeutic levels of FVIII transgene expression at its natural site of production, which occurred without the formation of neutralizing antibodies (inhibitors). Moreover, inhibitors were eradicated in FVIII pre-immune mice through a regulatory T cell-dependent mechanism. In conclusion, targeting FVIII expression to LSECs and myeloid cells by using LVs with cell-specific promoter minimized off-target expression and immune responses. Therefore, at least for some transgenes, expression at the physiologic site of synthesis can enhance efficacy and safety, resulting in long-term correction of genetic diseases such as HA.


Subject(s)
Hemophilia A/genetics , Hemophilia A/immunology , Immune Tolerance/genetics , Immunosuppression Therapy , Animals , CD11b Antigen/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Factor VIII/genetics , Factor VIII/immunology , Factor VIII/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors/genetics , Immunization , Immunosuppression Therapy/methods , Isoantibodies/blood , Isoantibodies/immunology , Lentivirus/genetics , Male , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Inbred C57BL , Organ Specificity/genetics , Promoter Regions, Genetic , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transduction, Genetic , Transgenes , Whole Blood Coagulation Time
8.
J Biol Chem ; 291(11): 5576-5595, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26740625

ABSTRACT

The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin ß4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of "self-recognition" as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis.


Subject(s)
Dendritic Cells/metabolism , HLA-DR1 Antigen/metabolism , Peptides/metabolism , Proteome/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Collagen Type II/chemistry , Collagen Type II/metabolism , Complement C3/chemistry , Complement C3/metabolism , Dendritic Cells/chemistry , Gelsolin/chemistry , Gelsolin/metabolism , HLA-DR1 Antigen/chemistry , Humans , Lymph/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Peptides/chemistry , Protein Binding , Proteome/chemistry , Proteomics , Signal Transduction , Thymosin/chemistry , Thymosin/metabolism
9.
Am J Pathol ; 186(3): 539-51, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26773351

ABSTRACT

Kupffer cells (KC) play major roles in immunity and tissue injury or repair. Because recapitulation of KC biology and function within liver will allow superior insights into their functional repertoire, we studied the efficacy of the cell transplantation approach for this purpose. Mouse KC were isolated from donor livers, characterized, and transplanted into syngeneic recipients. To promote cell engraftment through impairments in native KC, recipients were preconditioned with gadolinium chloride. The targeting, fate, and functionality of transplanted cells were evaluated. The findings indicated that transplanted KC engrafted and survived in recipient livers throughout the study period of 3 months. Transplanted KC expressed macrophage functions, including phagocytosis and cytokine expression, with or without genetic modifications using lentiviral vectors. This permitted studies of whether transplanted KC could affect outcomes in the context of acetaminophen hepatotoxicity or hepatic ischemia-reperfusion injury. Transplanted KC exerted beneficial effects in these injury settings. The benefits resulted from cytoprotective factors including vascular endothelial growth factor. In conclusion, transplanted adult KC were successfully targeted and engrafted in the liver with retention of innate immune and tissue repair functions over the long term. This will provide excellent opportunities to address critical aspects in the biogenesis, fate, and function of KC within their native liver microenvironment and to develop the cell and gene therapy potential of KC transplantation.


Subject(s)
Kupffer Cells/physiology , Kupffer Cells/transplantation , Macrophages/physiology , Reperfusion Injury/therapy , Acetaminophen/adverse effects , Animals , Chemical and Drug Induced Liver Injury/pathology , Cytokines/metabolism , Disease Models, Animal , Gadolinium , Genetic Therapy , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/physiology , Phagocytosis , Reperfusion Injury/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
J Hepatol ; 62(3): 573-80, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25315650

ABSTRACT

BACKGROUND & AIMS: Ischemia-reperfusion (IR) of liver results in hepatocytes (HP) and sinusoidal endothelial cells (LSEC) irreversible damage. Ischemic preconditioning protects IR damage upon adenosine A2a receptor (A2aR) stimulation. Understanding the phenotypic changes that underlie hepatocellular damage and protection is critical to optimize strategies against IR. METHODS: The proteome of HP and LSEC, isolated from sham or IR exposed mice, receiving or not the A2aR agonist CGS21680 (0.5mg/kg b.w.), was analyzed by 2-D DIGE/MALDI-TOF. RESULTS: We identified 64 proteins involved in cytoprotection, regeneration, energy metabolism and response to oxidative stress; among them, 34 were associated with IR injury and A2aR protection. The main pathways, downregulated by IR and upregulated by CGS21680 in HP and LSEC, were related to carbohydrate, protein and lipid supply and metabolism. In LSEC, IR reduced stress response enzymes that were instead upregulated by CGS21680 treatment. Functional validation experiments confirmed the metabolic involvement and showed that inhibition of pyruvate kinase, 3-chetoacylCoA thiolase, and arginase reduced the protection by CGS21680 of in vitro hypoxia-reoxygenation injury, whereas their metabolic products induced liver cell protection. Moreover, LSEC, but not HP, were sensitive to H2O2-induced oxidative damage and CGS21680 protected against this effect. CONCLUSIONS: IR and A2aR stimulation produces pathological and protected liver cell phenotypes, respectively characterized by down- and upregulation of proteins involved in the response to O2 and nutrients deprivation during ischemia, oxidative stress, and reactivation of aerobic energy synthesis at reperfusion. This provides novel insights into IR hepatocellular damage and protection, and suggests additional therapeutic options.


Subject(s)
Hepatocytes/metabolism , Hepatocytes/pathology , Liver/injuries , Receptor, Adenosine A2A/metabolism , Reperfusion Injury/etiology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine A2 Receptor Agonists/pharmacology , Animals , Antioxidants/pharmacology , Cytoprotection/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Hepatocytes/drug effects , Lipid Metabolism/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Phenethylamines/pharmacology , Proteome/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control
11.
Haematologica ; 100(7): 881-92, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25911555

ABSTRACT

A large fraction of factor VIII in blood originates from liver sinusoidal endothelial cells although extrahepatic sources also contribute to plasma factor VIII levels. Identification of cell-types other than endothelial cells with the capacity to synthesize and release factor VIII will be helpful for therapeutic approaches in hemophilia A. Recent cell therapy and bone marrow transplantation studies indicated that Küpffer cells, monocytes and mesenchymal stromal cells could synthesize factor VIII in sufficient amount to ameliorate the bleeding phenotype in hemophilic mice. To further establish the role of blood cells in expressing factor VIII, we studied various types of mouse and human hematopoietic cells. We identified factor VIII in cells isolated from peripheral and cord blood, as well as bone marrow. Co-staining for cell type-specific markers verified that factor VIII was expressed in monocytes, macrophages and megakaryocytes. We additionally verified that factor VIII was expressed in liver sinusoidal endothelial cells and endothelial cells elsewhere, e.g., in the spleen, lungs and kidneys. Factor VIII was well expressed in sinusoidal endothelial cells and Küpffer cells isolated from human liver, whereas by comparison isolated human hepatocytes expressed factor VIII at very low levels. After transplantation of CD34(+) human cord blood cells into NOD/SCIDγNull-hemophilia A mice, fluorescence activated cell sorting of peripheral blood showed >40% donor cells engrafted in the majority of mice. In these animals, plasma factor VIII activity 12 weeks after cell transplantation was up to 5% and nine of 12 mice survived after a tail clip-assay. In conclusion, hematopoietic cells, in addition to endothelial cells, express and secrete factor VIII: this information should offer further opportunities for understanding mechanisms of factor VIII synthesis and replenishment.


Subject(s)
Cord Blood Stem Cell Transplantation , Endothelial Cells/metabolism , Factor VIII/biosynthesis , Hemophilia A/therapy , Hemorrhage/prevention & control , Kupffer Cells/metabolism , Animals , Blood Coagulation/genetics , Disease Models, Animal , Endothelial Cells/pathology , Factor VIII/genetics , Factor VIII/metabolism , Fetal Blood/cytology , Fetal Blood/metabolism , Gene Expression Regulation , Graft Survival , Hemophilia A/blood , Hemophilia A/genetics , Hemophilia A/pathology , Hemorrhage/blood , Hemorrhage/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Kupffer Cells/pathology , Liver/metabolism , Liver/pathology , Megakaryocytes/metabolism , Megakaryocytes/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Monocytes/metabolism , Monocytes/pathology , Phenotype , Transplantation, Heterologous
12.
Blood ; 119(23): 5532-42, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22368271

ABSTRACT

To better understand cellular basis of hemophilia, cell types capable of producing FVIII need to be identified. We determined whether bone marrow (BM)-derived cells would produce cells capable of synthesizing and releasing FVIII by transplanting healthy mouse BM into hemophilia A mice. To track donor-derived cells, we used genetic reporters. Use of multiple coagulation assays demonstrated whether FVIII produced by discrete cell populations would correct hemophilia A. We found that animals receiving healthy BM cells survived bleeding challenge with correction of hemophilia, although donor BM-derived hepatocytes or endothelial cells were extremely rare, and these cells did not account for therapeutic benefits. By contrast, donor BM-derived mononuclear and mesenchymal stromal cells were more abundant and expressed FVIII mRNA as well as FVIII protein. Moreover, injection of healthy mouse Kupffer cells (liver macrophage/mononuclear cells), which predominantly originate from BM, or of healthy BM-derived mesenchymal stromal cells, protected hemophilia A mice from bleeding challenge with appearance of FVIII in blood. Therefore, BM transplantation corrected hemophilia A through donor-derived mononuclear cells and mesenchymal stromal cells. These insights into FVIII synthesis and production in alternative cell types will advance studies of pathophysiological mechanisms and therapeutic development in hemophilia A.


Subject(s)
Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Factor VIII/metabolism , Hemophilia A/surgery , Animals , Bone Marrow Cells/cytology , Endothelial Cells/cytology , Hemophilia A/metabolism , Humans , Kupffer Cells/transplantation , Mesenchymal Stem Cell Transplantation , Mice , Mice, Inbred C57BL
13.
Mol Ther Nucleic Acids ; 35(1): 102116, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38333675

ABSTRACT

Liver sinusoidal endothelial cells (LSECs) are specialized endocytic cells that clear the body from blood-borne pathogens and waste macromolecules through scavenger receptors (SRs). Among the various SRs expressed by LSECs is stabilin-2 (STAB2), a class H SR that binds to several ligands, among which endogenous coagulation products. Given the well-established tolerogenic function of LSECs, we asked whether the STAB2 promoter (STAB2p) would enable us to achieve LSEC-specific lentiviral vector (LV)-mediated transgene expression, and whether the expression of this transgene would be maintained over the long term due to tolerance induction. Here, we show that STAB2p ensures LSEC-specific green fluorescent protein (GFP) expression by LV in the absence of a specific cytotoxic CD8+ T cell immune response, even in the presence of GFP-specific CD8+ T cells, confirming the robust tolerogenic function of LSECs. Finally, we show that our delivery system can partially and permanently restore FVIII activity in a mouse model of severe hemophilia A without the formation of anti-FVIII antibodies. Overall, our findings establish the suitability of STAB2p for long-term LSEC-restricted expression of therapeutic proteins, such as FVIII, or to achieve antigen-specific immune tolerance in auto-immune diseases.

14.
EMBO Mol Med ; 16(6): 1427-1450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684862

ABSTRACT

Lentiviral vectors (LV) are efficient vehicles for in vivo gene delivery to the liver. LV integration into the chromatin of target cells ensures their transmission upon proliferation, thus allowing potentially life-long gene therapy following a single administration, even to young individuals. The glycoprotein of the vesicular stomatitis virus (VSV.G) is widely used to pseudotype LV, as it confers broad tropism and high stability. The baculovirus-derived GP64 envelope protein has been proposed as an alternative for in vivo liver-directed gene therapy. Here, we perform a detailed comparison of VSV.G- and GP64-pseudotyped LV in vitro and in vivo. We report that VSV.G-LV transduced hepatocytes better than GP64-LV, however the latter showed improved transduction of liver sinusoidal endothelial cells (LSEC). Combining GP64-pseudotyping with the high surface content of the phagocytosis inhibitor CD47 further enhanced LSEC transduction. Coagulation factor VIII (FVIII), the gene mutated in hemophilia A, is naturally expressed by LSEC, thus we exploited GP64-LV to deliver a FVIII transgene under the control of the endogenous FVIII promoter and achieved therapeutic amounts of FVIII and correction of hemophilia A mice.


Subject(s)
Endothelial Cells , Factor VIII , Genetic Therapy , Genetic Vectors , Hemophilia A , Lentivirus , Liver , Animals , Hemophilia A/therapy , Hemophilia A/genetics , Genetic Vectors/genetics , Endothelial Cells/metabolism , Mice , Lentivirus/genetics , Genetic Therapy/methods , Liver/metabolism , Factor VIII/genetics , Factor VIII/metabolism , Humans , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Transduction, Genetic/methods , Hepatocytes/metabolism , Hepatocytes/virology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism
15.
J Immunol ; 185(3): 1485-91, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20581147

ABSTRACT

Osteoclasts are resident cells of the bone that are primarily involved in the physiological and pathological remodeling of this tissue. Mature osteoclasts are multinucleated giant cells that are generated from the fusion of circulating precursors originating from the monocyte/macrophage lineage. During inflammatory bone conditions in vivo, de novo osteoclastogenesis is observed but it is currently unknown whether, besides increased osteoclast differentiation from undifferentiated precursors, other cell types can generate a multinucleated giant cell phenotype with bone resorbing activity. In this study, an animal model of calvaria-induced aseptic osteolysis was used to analyze possible bone resorption capabilities of dendritic cells (DCs). We determined by FACS analysis and confocal microscopy that injected GFP-labeled immature DCs were readily recruited to the site of osteolysis. Upon recruitment, the cathepsin K-positive DCs were observed in bone-resorbing pits. Additionally, chromosomal painting identified nuclei from female DCs, previously injected into a male recipient, among the nuclei of giant cells at sites of osteolysis. Finally, osteolysis was also observed upon recruitment of CD11c-GFP conventional DCs in Csf1r(-/-) mice, which exhibit a severe depletion of resident osteoclasts and tissue macrophages. Altogether, our analysis indicates that DCs may have an important role in bone resorption associated with various inflammatory diseases.


Subject(s)
Bone Resorption/immunology , Bone Resorption/pathology , Dendritic Cells/immunology , Dendritic Cells/pathology , Animals , Bone Marrow Transplantation/immunology , Bone Marrow Transplantation/pathology , Bone Resorption/genetics , Cell Movement/genetics , Cell Movement/immunology , Cells, Cultured , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteoclasts/immunology , Osteoclasts/pathology , Osteolysis/immunology , Osteolysis/pathology , Receptor, Macrophage Colony-Stimulating Factor/deficiency , Receptor, Macrophage Colony-Stimulating Factor/genetics , Skull/immunology , Skull/pathology , Transduction, Genetic
16.
Cell Rep ; 39(1): 110621, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385743

ABSTRACT

Liver sinusoidal endothelial cells (LSECs) form the predominant microvasculature in the liver where they carry out many functions including the secretion of coagulation factor VIII (FVIII). To investigate the early origins of this lineage, we develop an efficient and scalable protocol to produce human pluripotent stem cell (hPSC)-derived LSEC progenitors characterized as venous endothelial cells (VECs) from different mesoderm subpopulations. Using a sensitive and quantitative vascular competitive transplantation assay, we demonstrate that VECs generated from BMP4 and activin A-induced KDR+CD235a/b+ mesoderm are 50-fold more efficient at LSEC engraftment than venous cells from BMP4 and WNT-induced KDR+CD235a/b- mesoderm. When transplanted into immunocompromised hemophilia A mice (NSG-HA), these VECs engraft the liver, proliferate, and mature to functional LSECs that secrete bioactive FVIII capable of correcting the bleeding phenotype. Together, these findings highlight the importance of appropriate mesoderm induction for generating hPSC-derived LSECs capable of functioning in a preclinical model of hemophilia A.


Subject(s)
Endothelial Progenitor Cells , Hemophilia A , Pluripotent Stem Cells , Animals , Hemophilia A/genetics , Hemophilia A/therapy , Hepatocytes , Liver , Mice
17.
J Thromb Haemost ; 20(3): 648-660, 2022 03.
Article in English | MEDLINE | ID: mdl-34847278

ABSTRACT

BACKGROUND: Trousseau sign was the first demonstration of a close relationship between cancer and thrombosis. Currently, venous thromboembolism (VTE) is five to six times more likely to occur in cancer patients, whereas there is a greater risk of cancer diagnoses following thromboses. In considering novel players, factor VIII (FVIII), an essential coagulation cofactor with emerging extracoagulative functions, has been identified as an independent VTE risk factor in cancer; however, the basis of this increase is unknown. OBJECTIVE: To investigate the possible direct expression and secretion of FVIII by cancer cells. METHODS: Bladder cancer, with a high VTE risk, and normal bladder tissue and epithelium, were used to investigate FVIII. Factor VIII protein and secretion were examined in bladder cancer cell lines. Expanding to other cancers, the Cancer Cell line Encyclopedia database was used to analyze FVIII, tissue factor, FV, FVII, FIX, FX, and von Willebrand factor (VWF) mRNA in 811 cell lines subdivided according to origin. Factor VIII protein synthesis, secretion, and bioactivity were investigated in a profile of cancer cell lines of differing origins. RESULTS AND CONCLUSIONS: Although expressed in the normal bladder epithelium, FVIII mRNA and protein were higher in matched bladder neoplasms, with synthesis and secretion of bioactive FVIII evident in bladder cancer cells. This can be extended to other cancer cell lines, with a pattern reflecting the tumor origin, and that is independent of VWF and other relevant players in the coagulation cascade. Here, evidence is provided of a possible independent role for FVIII in cancer-related pathophysiology.


Subject(s)
Factor VIII/metabolism , Hemostatics , Neoplasms , Blood Coagulation , Factor VIII/genetics , Humans , von Willebrand Factor/metabolism
18.
EMBO Mol Med ; 14(6): e15199, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35491676

ABSTRACT

Liver gene therapy with adeno-associated viral (AAV) vectors is under clinical investigation for haemophilia A (HemA), the most common inherited X-linked bleeding disorder. Major limitations are the large size of the F8 transgene, which makes packaging in a single AAV vector a challenge, as well as the development of circulating anti-F8 antibodies which neutralise F8 activity. Taking advantage of split-intein-mediated protein trans-splicing, we divided the coding sequence of the large and highly secreted F8-N6 variant in two separate AAV-intein vectors whose co-administration to HemA mice results in the expression of therapeutic levels of F8 over time. This occurred without eliciting circulating anti-F8 antibodies unlike animals treated with the single oversized AAV-F8 vector under clinical development. Therefore, liver gene therapy with AAV-F8-N6 intein should be considered as a potential therapeutic strategy for HemA.


Subject(s)
Hemophilia A , Inteins , Animals , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors , Hemophilia A/genetics , Hemophilia A/therapy , Inteins/genetics , Liver , Mice , Trans-Splicing
19.
Cancer Sci ; 102(7): 1329-36, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21477072

ABSTRACT

Hepatocyte growth factor (HGF) is involved in the pathogenesis of Kaposi's sarcoma (KS), the most frequent neoplasia in patients with AIDS, characterized by proliferating spindle cells, infiltrating inflammatory cells, angiogenesis, edema, and invasiveness. In vitro, this factor sustains the biological behavior of KS derived cells, after activation of its receptor and the downstream MAPK and AKT signals. In other cell types, namely endothelial and epithelial cells, movement, proliferation, and survival stimulated by HGF and other growth factors and cytokines depend on diacylglycerol kinases (DGK). In an effort to identify new intracellular transducers operative in KS cells, which could represent therapeutic targets, we investigated the role of DGK in KS cell movement and proliferation by treating cells with the DGK pharmacological inhibitor R59949. We report that R59949 strongly inhibits HGF-induced KS motility, proliferation, and anchorage-independent growth with only a partial effect on cell adhesion and spreading. R59949 does not affect cell survival, HGF receptor activation, or the classical MAPK and AKT signalling pathways. Furthermore, we carried out an siRNA screen to characterize the DGK isoforms involved in KS motility and anchorage independent growth. Our data indicate a strong involvement of DGK-δ in KS motility and of DGK-ι in anchorage-independent growth. These results indicate that DGK inhibition is sufficient to impair in vitro KS cell proliferation and movement and suggest that selected DGK represent new pharmacological targets to interfere with the malignant properties of KS, independently from the well-known RAS/MAPK and PI3K/AKT pathways.


Subject(s)
Diacylglycerol Kinase/physiology , Hepatocyte Growth Factor/pharmacology , Sarcoma, Kaposi/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Diacylglycerol Kinase/antagonists & inhibitors , Humans , Piperidines/pharmacology , Proto-Oncogene Proteins c-met/physiology , Quinazolinones/pharmacology , Signal Transduction
20.
Blood ; 114(8): 1707-16, 2009 Aug 20.
Article in English | MEDLINE | ID: mdl-19411631

ABSTRACT

EphrinB transmembrane ligands and their cognate EphB receptor tyrosine kinases regulate vascular development through bidirectional cell-to-cell signaling, but little is known about the role of EphrinB during postnatal vascular remodeling. We report that EphrinB is a critical mediator of postnatal pericyte-to-endothelial cell assembly into vascular structures. This function is dependent upon extracellular matrix-supported cell-to-cell contact, engagement of EphrinB by EphB receptors expressed on another cell, and Src-dependent phosphorylation of the intracytoplasmic domain of EphrinB. Phosphorylated EphrinB marks angiogenic blood vessels in the developing and hypoxic retina, the wounded skin, and tumor tissue, and is detected at contact points between endothelial cells and pericytes. Furthermore, inhibition ofEphrinB activity prevents proper assembly of pericytes and endothelial cells into vascular structures. These results reveal a role for EphrinB signaling in orchestrating pericyte/endothelial cell assembly, and suggest that therapeutic targeting of EphrinB may prove useful for disrupting angiogenesis when it contributes to disease.


Subject(s)
Blood Vessels/growth & development , Endothelial Cells/physiology , Ephrins/physiology , Neovascularization, Physiologic/physiology , Pericytes/physiology , Animals , Animals, Newborn , Blood Vessels/metabolism , Bone Marrow Cells/physiology , Cell Adhesion/genetics , Cells, Cultured , Endothelial Cells/metabolism , Ephrin-B2/antagonists & inhibitors , Ephrin-B2/genetics , Ephrin-B2/physiology , Ephrins/genetics , Ephrins/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Neovascularization, Physiologic/genetics , Pericytes/metabolism , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Receptors, Eph Family/physiology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL