Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
J Chem Inf Model ; 64(3): 749-760, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38206321

ABSTRACT

Accurately determining the global minima of a molecular structure is important in diverse scientific fields, including drug design, materials science, and chemical synthesis. Conformational search engines serve as valuable tools for exploring the extensive conformational space of molecules and for identifying energetically favorable conformations. In this study, we present a comparison of Auto3D, CREST, Balloon, and ETKDG (from RDKit), which are freely available conformational search engines, to evaluate their effectiveness in locating global minima. These engines employ distinct methodologies, including machine learning (ML) potential-based, semiempirical, and force field-based approaches. To validate these methods, we propose the use of collisional cross-section (CCS) values obtained from ion mobility-mass spectrometry studies. We hypothesize that experimental gas-phase CCS values can provide experimental evidence that we likely have the global minimum for a given molecule. To facilitate this effort, we used our gas-phase conformation library (GPCL) which currently consists of the full ensembles of 20 small molecules and can be used by the community to validate any conformational search engine. Further members of the GPCL can be readily created for any molecule of interest using our standard workflow used to compute CCS values, expanding the ability of the GPCL in validation exercises. These innovative validation techniques enhance our understanding of the conformational landscape and provide valuable insights into the performance of conformational generation engines. Our findings shed light on the strengths and limitations of each search engine, enabling informed decisions for their utilization in various scientific fields, where accurate molecular structure determination is crucial for understanding biological activity and designing targeted interventions. By facilitating the identification of reliable conformations, this study significantly contributes to enhancing the efficiency and accuracy of molecular structure determination, with particular focus on metabolite structure elucidation. The findings of this research also provide valuable insights for developing effective workflows for predicting the structures of unknown compounds with high precision.


Subject(s)
Gases , Molecular Conformation , Gases/chemistry
2.
J Chem Inf Model ; 64(8): 3140-3148, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38587510

ABSTRACT

Understanding the energetic landscapes of large molecules is necessary for the study of chemical and biological systems. Recently, deep learning has greatly accelerated the development of models based on quantum chemistry, making it possible to build potential energy surfaces and explore chemical space. However, most of this work has focused on organic molecules due to the simplicity of their electronic structures as well as the availability of data sets. In this work, we build a deep learning architecture to model the energetics of zinc organometallic complexes. To achieve this, we have compiled a configurationally and conformationally diverse data set of zinc complexes using metadynamics to overcome the limitations of traditional sampling methods. In terms of the neural network potentials, our results indicate that for zinc complexes, partial charges play an important role in modeling the long-range interactions with a neural network. Our developed model outperforms semiempirical methods in predicting the relative energy of zinc conformers, yielding a mean absolute error (MAE) of 1.32 kcal/mol with reference to the double-hybrid PWPB95 method.


Subject(s)
Neural Networks, Computer , Zinc , Zinc/chemistry , Molecular Conformation , Coordination Complexes/chemistry , Models, Molecular , Thermodynamics , Quantum Theory , Molecular Dynamics Simulation
3.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38856060

ABSTRACT

We report the development and testing of new integrated cyberinfrastructure for performing free energy simulations with generalized hybrid quantum mechanical/molecular mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander molecular dynamics program has been extended to leverage fast, density-functional tight-binding models implemented in the DFTB+ and xTB packages, and an interface to the DeePMD-kit software enables the use of MLPs. The software is integrated through application program interfaces that circumvent the need to perform "system calls" and enable the incorporation of long-range Ewald electrostatics into the external software's self-consistent field procedure. The infrastructure provides access to QM/MM models that may serve as the foundation for QM/MM-ΔMLP potentials, which supplement the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio QM/MM energies and forces. Efficient optimization of minimum free energy pathways is enabled through a new surface-accelerated finite-temperature string method implemented in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by implementing the socket communication protocol used in the i-PI client-server model. The new interface with i-PI allows for the treatment of nuclear quantum effects with semiempirical QM/MM-ΔMLP models. The modular interoperable software is demonstrated on proton transfer reactions in guanine-thymine mispairs in a B-form deoxyribonucleic acid helix. The current work represents a considerable advance in the development of modular software for performing free energy simulations of chemical reactions that are important in a wide range of applications.

4.
J Chem Inf Model ; 63(16): 4995-5000, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37548575

ABSTRACT

We implemented an ab initio CCS prediction workflow which incrementally refines generated structures using molecular mechanics, a deep learning potential, conformational clustering, and quantum mechanics (QM). Automating intermediate steps for a high performance computing (HPC) environment allows users to input the SMILES structure of small organic molecules and obtain a Boltzmann averaged collisional cross section (CCS) value as output. The CCS of a molecular species is a metric measured by ion mobility spectrometry (IMS) which can improve annotation of untargeted metabolomics experiments. We report only a minor drop in accuracy when we expedite the CCS calculation by replacing the QM geometry refinement step with a single-point energy calculation. Even though the workflow involves stochastic steps (i.e., conformation generation and clustering), the final CCS value was highly reproducible for multiple iterations on L-carnosine. Finally, we illustrate that the gas phase ensembles modeled for the workflow are intermediate files which can be used for the prediction of other properties such as aqueous phase nuclear magnetic resonance chemical shift prediction. The software is available at the following link: https://github.com/DasSusanta/snakemake_ccs.


Subject(s)
Metabolomics , Software , Metabolomics/methods , Molecular Dynamics Simulation , Magnetic Resonance Spectroscopy , Computing Methodologies
5.
J Chem Inf Model ; 63(3): 711-717, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36720086

ABSTRACT

We have ported and optimized the graphics processing unit (GPU)-accelerated QUICK and AMBER-based ab initio quantum mechanics/molecular mechanics (QM/MM) implementation on AMD GPUs. This encompasses the entire Fock matrix build and force calculation in QUICK including one-electron integrals, two-electron repulsion integrals, exchange-correlation quadrature, and linear algebra operations. General performance improvements to the QUICK GPU code are also presented. Benchmarks carried out on NVIDIA V100 and AMD MI100 cards display similar performance on both hardware for standalone HF/DFT calculations with QUICK and QM/MM molecular dynamics simulations with QUICK/AMBER. Furthermore, with respect to the QUICK/AMBER release version 21, significant speedups are observed for QM/MM molecular dynamics simulations. This significantly increases the range of scientific problems that can be addressed with open-source QM/MM software on state-of-the-art computer hardware.


Subject(s)
Molecular Dynamics Simulation , Software , Computers , Quantum Theory , Density Functional Theory
7.
Chem Rev ; 121(10): 5633-5670, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33979149

ABSTRACT

A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials ("standards"), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for "standards-free" identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.


Subject(s)
Metabolomics , Quantum Theory
8.
J Chem Inf Model ; 62(24): 6574-6585, 2022 12 26.
Article in English | MEDLINE | ID: mdl-35118864

ABSTRACT

The recent outbreak of COVID-19 infection started in Wuhan, China, and spread across China and beyond. Since the WHO declared COVID-19 a pandemic (March 11, 2020), three vaccines and only one antiviral drug (remdesivir) have been approved (Oct 22, 2020) by the FDA. The coronavirus enters human epithelial cells by the binding of the densely glycosylated fusion spike protein (S protein) to a receptor (angiotensin-converting enzyme 2, ACE2) on the host cell surface. Therefore, inhibiting the viral entry is a promising treatment pathway for preventing or ameliorating the effects of COVID-19 infection. In the current work, we have used all-atom molecular dynamics (MD) simulations to investigate the influence of the MLN-4760 inhibitor on the conformational properties of ACE2 and its interaction with the receptor-binding domain (RBD) of SARS-CoV-2. We have found that the presence of an inhibitor tends to completely/partially open the ACE2 receptor where the two subdomains (I and II) move away from each other, while the absence results in partial or complete closure. The current study increases our understanding of ACE inhibition by MLN-4760 and how it modulates the conformational properties of ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/drug effects
9.
Chem Soc Rev ; 50(16): 9121-9151, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34212944

ABSTRACT

COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Computer Simulation , Drug Design , Drug Discovery/methods , Drug Repositioning , Antiviral Agents/therapeutic use , COVID-19/virology , Clinical Trials as Topic , Humans , Pandemics , SARS-CoV-2/drug effects
10.
Biochemistry ; 60(36): 2727-2738, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34455776

ABSTRACT

Zinc homeostasis in mammals is constantly and precisely maintained by sophisticated regulatory proteins. Among them, the Zrt/Irt-like protein (ZIP) regulates the influx of zinc into the cytoplasm. In this work, we have employed all-atom molecular dynamics simulations to investigate the Zn2+ transport mechanism in prokaryotic ZIP obtained from Bordetella bronchiseptica (BbZIP) in a membrane bilayer. Additionally, the structural and dynamical transformations of BbZIP during this process have been analyzed. This study allowed us to develop a hypothesis for the zinc influx mechanism and formation of the metal-binding site. We have created a model for the outward-facing form of BbZIP (experimentally only the inward-facing form has been characterized) that has allowed us, for the first time, to observe the Zn2+ ion entering the channel and binding to the negatively charged M2 site. It is thought that the M2 site is less favored than the M1 site, which then leads to metal ion egress; however, we have not observed the M1 site being occupied in our simulations. Furthermore, removing both Zn2+ ions from this complex resulted in the collapse of the metal-binding site, illustrating the "structural role" of metal ions in maintaining the binding site and holding the proteins together. Finally, due to the long Cd2+-residue bond distances observed in the X-ray structures, we have proposed the existence of an H3O+ ion at the M2 site that plays an important role in protein stability in the absence of the metal ion.


Subject(s)
Bordetella bronchiseptica/metabolism , Carrier Proteins/chemistry , Cation Transport Proteins/metabolism , Computer Simulation/standards , Zinc/metabolism , Carrier Proteins/metabolism , Molecular Dynamics Simulation , Protein Structural Elements
11.
J Chem Inf Model ; 61(4): 1647-1656, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33780248

ABSTRACT

While accurately modeling the conformational ensemble is required for predicting properties of flexible molecules, the optimal method of obtaining the conformational ensemble appears as varied as their applications. Ensemble structures have been modeled by generation, refinement, and clustering of conformations with a sufficient number of samples. We present a conformational clustering algorithm intended to automate the conformational clustering step through the Louvain algorithm, which requires minimal hyperparameters and importantly no predefined number of clusters or threshold values. The conformational graphs produced by this method for O-succinyl-l-homoserine, oxidized nicotinamide adenine dinucleotide, and 200 representative metabolites each preserved the geometric/energetic correlation expected for points on the potential energy surface. Clustering based on these graphs provides partitions informed by the potential energy surface. Automating conformational clustering in a workflow with AutoGraph may mitigate human biases introduced by guess and check over hyperparameter selection while allowing flexibility to the result by not imposing predefined criteria other than optimizing the model's loss function. Associated codes are available at https://github.com/TanemuraKiyoto/AutoGraph.


Subject(s)
Algorithms , Cluster Analysis , Humans , Molecular Conformation , Workflow
12.
J Chem Inf Model ; 61(2): 869-880, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33538599

ABSTRACT

Monovalent ions play significant roles in various biological and material systems. Recently, four new water models (OPC3, OPC, TIP3P-FB, and TIP4P-FB), with significantly improved descriptions of condensed phase water, have been developed. The pairwise interaction between the metal ion and water necessitates the development of ion parameters specifically for these water models. Herein, we parameterized the 12-6 and the 12-6-4 nonbonded models for 12 monovalent ions with the respective four new water models. These monovalent ions contain eight cations including alkali metal ions (Li+, Na+, K+, Rb+, Cs+), transition-metal ions (Cu+ and Ag+), and Tl+ from the boron family, along with four halide anions (F-, Cl-, Br-, I-). Our parameters were designed to reproduce the target hydration free energies (the 12-6 hydration free energy (HFE) set), the ion-oxygen distances (the 12-6 ion-oxygen distance (IOD) set), or both of them (the 12-6-4 set). The 12-6-4 parameter set provides highly accurate structural features overcoming the limitations of the routinely used 12-6 nonbonded model for ions. Specifically, we note that the 12-6-4 parameter set is able to reproduce experimental hydration free energies within 1 kcal/mol and experimental ion-oxygen distances within 0.01 Å simultaneously. We further reproduced the experimentally determined activity derivatives for salt solutions, validating the ion parameters for simulations of ion pairs. The improved performance of the present water models over our previous parameter sets for the TIP3P, TIP4P, and SPC/E water models (Li, P. et al J. Chem. Theory Comput. 2015 11 1645 1657) highlights the importance of the choice of water model in conjunction with the metal ion parameter set.


Subject(s)
Metals , Water , Entropy , Ions , Thermodynamics
13.
J Chem Inf Model ; 61(5): 2109-2115, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33913331

ABSTRACT

The quantum mechanics/molecular mechanics (QM/MM) approach is an essential and well-established tool in computational chemistry that has been widely applied in a myriad of biomolecular problems in the literature. In this publication, we report the integration of the QUantum Interaction Computational Kernel (QUICK) program as an engine to perform electronic structure calculations in QM/MM simulations with AMBER. This integration is available through either a file-based interface (FBI) or an application programming interface (API). Since QUICK is an open-source GPU-accelerated code with multi-GPU parallelization, users can take advantage of "free of charge" GPU-acceleration in their QM/MM simulations. In this work, we discuss implementation details and give usage examples. We also investigate energy conservation in typical QM/MM simulations performed at the microcanonical ensemble. Finally, benchmark results for two representative systems in bulk water, the N-methylacetamide (NMA) molecule and the photoactive yellow protein (PYP), show the performance of QM/MM simulations with QUICK and AMBER using a varying number of CPU cores and GPUs. Our results highlight the acceleration obtained from a single or multiple GPUs; we observed speedups of up to 53× between a single GPU vs a single CPU core and of up to 2.6× when comparing four GPUs to a single GPU. Results also reveal speedups of up to 3.5× when the API is used instead of FBI.


Subject(s)
Molecular Dynamics Simulation , Software , Physics , Proteins , Water
14.
Proteins ; 88(12): 1559-1568, 2020 12.
Article in English | MEDLINE | ID: mdl-32729132

ABSTRACT

Protein-protein interactions (PPIs) are ubiquitous and functionally of great importance in biological systems. Hence, the accurate prediction of PPIs by protein-protein docking and scoring tools is highly desirable in order to characterize their structure and biological function. Ab initio docking protocols are divided into the sampling of docking poses to produce at least one near-native structure, and then to evaluate the vast candidate structures by scoring. Concurrent development in both sampling and scoring is crucial for the deployment of protein-protein docking software. In the present work, we apply a machine learning model on pairwise potentials to refine the task of protein quaternary structure native structure detection among decoys. A decoy set was featurized using the Knowledge and Empirical Combined Scoring Algorithm 2 (KECSA2) pairwise potential. The highly unbalanced decoy set was then balanced using a comparison concept between native and decoy structures. The resultant comparison descriptors were used to train a logistic regression (LR) classifier. The LR model yielded the optimal performance for native detection among decoys compared with conventional scoring functions, while exhibiting lesser performance for the detection of low root mean square deviation decoy structures. Its deployment on an independent benchmark set confirms that the scoring function performs competitively relative to other scoring functions. The scripts used are available at https://github.com/TanemuraKiyoto/PPI-native-detection-via-LR.


Subject(s)
Algorithms , Computational Biology/methods , Protein Interaction Mapping/methods , Proteins/metabolism , Software , Humans , Logistic Models , Molecular Docking Simulation , Protein Conformation
15.
J Am Chem Soc ; 142(13): 6365-6374, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32141296

ABSTRACT

Modeling the thermodynamics of a transition metal (TM) ion assembly be it in proteins or in coordination complexes affords us a better understanding of the assembly and function of metalloclusters in diverse application areas including metal organic framework design, TM-based catalyst design, the trafficking of TM ions in biological systems, and drug design in metalloprotein platforms. While the structural details of TM ions bound to metalloproteins are generally well understood via experimental and computational approaches, accurate studies describing the thermodynamics of TM ion binding are rare. Herein, we demonstrate that we can obtain accurate structural and absolute binding free energies of Co2+ and Ni2+ to the enzyme glyoxalase I using an optimized 12-6-4 (m12-6-4) potential. Critically, this model simultaneously reproduces the solvation free energy of the individual TM ions and reproduces the thermodynamics of TM ion-ligand coordination as well as the thermodynamics of TM ion binding to a protein active site unlike extant models. We find the incorporation of the thermodynamics associated with protonation state changes for the TM ion (un)binding to be crucial. The high accuracy of m12-6-4 potential in this study presents an accurate route to explore more complicated processes associated with TM cluster assembly and TM ion transport.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Lactoylglutathione Lyase/chemistry , Metalloproteins/chemistry , Transition Elements/chemistry , Binding Sites , Ions/chemistry , Models, Molecular , Thermodynamics
16.
Anal Chem ; 92(15): 10412-10419, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32608974

ABSTRACT

A major challenge for metabolomic analysis is to obtain an unambiguous identification of the metabolites detected in a sample. Among metabolomics techniques, NMR spectroscopy is a sophisticated, powerful, and generally applicable spectroscopic tool that can be used to ascertain the correct structure of newly isolated biogenic molecules. However, accurate structure prediction using computational NMR techniques depends on how much of the relevant conformational space of a particular compound is considered. It is intrinsically challenging to calculate NMR chemical shifts using high-level DFT when the conformational space of a metabolite is extensive. In this work, we developed NMR chemical shift calculation protocols using a machine learning model in conjunction with standard DFT methods. The pipeline encompasses the following steps: (1) conformation generation using a force field (FF)-based method, (2) filtering the FF generated conformations using the ASE-ANI machine learning model, (3) clustering of the optimized conformations based on structural similarity to identify chemically unique conformations, (4) DFT structural optimization of the unique conformations, and (5) DFT NMR chemical shift calculation. This protocol can calculate the NMR chemical shifts of a set of molecules using any available combination of DFT theory, solvent model, and NMR-active nuclei, using both user-selected reference compounds and/or linear regression methods. Our protocol reduces the overall computational time by 2 orders of magnitude over methods that optimize the conformations using fully ab initio methods, while still producing good agreement with experimental observations. The complete protocol is designed in such a manner that makes the computation of chemical shifts tractable for a large number of conformationally flexible metabolites.


Subject(s)
Computer Simulation , Magnetic Resonance Spectroscopy/methods , Molecular Imaging/methods , Density Functional Theory , Metabolomics , Molecular Structure , Quantum Theory
17.
J Chem Inf Model ; 60(11): 5308-5318, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32818371

ABSTRACT

The goal of the present manuscript is to succinctly trace the key technological steps in the evolution of alchemical free energy methods (AFEMs) from a purely theoretical construct to a method that is now widely used in the biotechnological and pharmaceutical industries. More specifically, we focus on relative binding free energy (RBFE) computations which are more routinely applied in computer aided drug design (CADD) campaigns rather than the more computationally intensive absolute binding free energy (ABFE) computations. We have not been exhaustive in the development of our timeline but rather try to weave a story about how theoretical ideas were ultimately converted into contemporary free energy capabilities. Necessarily this story-telling approach limits us from citing all work on AFEMs, and we apologize for this shortcoming. However, for those interested in a broad delineation of all the work done in this area they are directed to the many excellent reviews that are extant.


Subject(s)
Drug Discovery , Molecular Dynamics Simulation , Entropy , Ligands , Thermodynamics
18.
J Chem Inf Model ; 60(12): 5870-5872, 2020 12 28.
Article in English | MEDLINE | ID: mdl-33058674

ABSTRACT

Modern scientometric techniques, applied at scale, can provide valuable information that complements qualitative investigation of the accumulation of knowledge in a field. We discuss a trio of articles from computational chemistry selected from an analysis of 181 million tri-cited articles.


Subject(s)
Bibliometrics , Cheminformatics
19.
J Chem Inf Model ; 60(10): 4424-4428, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32672967

ABSTRACT

MRP.py is a Python-based parametrization program for covalently modified amino acid residues for molecular dynamics simulations. Charge derivation is performed via an RESP charge fit, and force constants are obtained through rewriting of either protein or GAFF database parameters. This allows for the description of interfacial interactions between the modifed residue and protein. MRP.py is capable of working with a variety of protein databases. MRP.py's highly general and systematic method of obtaining parameters allows the user to circumvent the process of parametrizing the modified residue-protein interface. Two examples, a covalently bound inhibitor and covalent adduct consisting of modified residues, are provided in the Supporting Information.


Subject(s)
Molecular Dynamics Simulation , Databases, Factual
20.
J Chem Inf Model ; 60(11): 5296-5300, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32551593

ABSTRACT

Herein we provide high-precision validation tests of the latest GPU-accelerated free energy code in AMBER. We demonstrate that consistent free energy results are obtained in both the gas phase and in solution. We first show, in the context of thermodynamic integration (TI), that the results are invariant with respect to "split" (e.g., stepwise decharge-vdW-recharge) versus "unified" protocols. This brought to light a subtle inconsistency in previous versions of AMBER that was traced to the improper treatment of 1-4 vdW and electrostatic interactions involving atoms across the softcore boundary. We illustrate that under the assumption that the ensembles produced by different legs of the alchemical transformation between molecules A and B in the gas phase and aqueous phase are very small, the inconsistency in the relative hydration free energy ΔΔGhydr[A → B] = ΔGaq[A → B] - ΔGgas[A → B] is minimal. However, for general cases where the ensembles are shown to be substantially different, as expected in ligand-protein binding applications, these errors can be large. Finally, we demonstrate that results for relative hydration free energy simulations are independent of TI or multistate Bennett's acceptance ratio (MBAR) analysis, invariant to the specific choice of the softcore region, and in agreement with results derived from absolute hydration free energy values.


Subject(s)
Molecular Dynamics Simulation , Proteins , Ligands , Protein Binding , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL