Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
1.
Blood ; 143(16): 1576-1585, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38227934

ABSTRACT

ABSTRACT: Autoimmune cytopenia (AIC) in children may be associated with positive antinuclear antibodies (ANA) and may progress to systemic lupus erythematosus (SLE). We evaluated the risk of progression to SLE of childhood-onset ANA-associated AIC. In the French national prospective OBS'CEREVANCE cohort, the long-term outcome of children with ANA-associated AIC (ANA titer ≥1/160) and a subgroup of children who developed SLE were described. ANA were positive in 355 of 1803 (20%) children with AIC. With a median follow-up of 5.8 (range, 0.1-29.6) years, 79 of 355 (22%) patients developed SLE at a median age of 14.5 (1.1-21.4) years; 20% of chronic immune thrombocytopenic purpura, 19% of autoimmune hemolytic anemia, and 45% of Evans syndrome. None of the patients with ANA-negative test developed SLE. Severe manifestations of SLE were observed in 21 patients, and 2 patients died. In multivariate analysis including patients with positive ANA within the first 3 months after AIC diagnosis, age >10 years at AIC diagnosis (relative risk [RR], 3.67; 95% confidence interval [CI], 1.18-11.4; P = .024) and ANA titer >1/160 (RR, 5.28; 95% CI, 1.20-23.17; P = .027) were associated with the occurrence of SLE after AIC diagnosis. ANA-associated AIC is a risk factor for progression to SLE, especially in children with an initial ANA titer >1/160 and an age >10 years at AIC diagnosis. ANA screening should be recommended in children with AIC, and patients with ANA should be monitored long-term for SLE, with special attention to the transition period. This trial was registered at www.ClinicalTrials.gov as #NCT05937828.


Subject(s)
Cytopenia , Lupus Erythematosus, Systemic , Adolescent , Adult , Child , Humans , Young Adult , Antibodies, Antinuclear , Lupus Erythematosus, Systemic/diagnosis , Prospective Studies , Risk Factors
2.
Blood ; 141(22): 2713-2726, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36952639

ABSTRACT

Dedicator of cytokinesis (DOCK) proteins play a central role in actin cytoskeleton regulation. This is highlighted by the DOCK2 and DOCK8 deficiencies leading to actinopathies and immune deficiencies. DOCK8 and DOCK11 activate CDC42, a Rho-guanosine triphosphate hydrolases involved in actin cytoskeleton dynamics, among many cellular functions. The role of DOCK11 in human immune disease has been long suspected but, to the best of our knowledge, has never been described to date. We studied 8 male patients, from 7 unrelated families, with hemizygous DOCK11 missense variants leading to reduced DOCK11 expression. The patients were presenting with early-onset autoimmunity, including cytopenia, systemic lupus erythematosus, skin, and digestive manifestations. Patients' platelets exhibited abnormal ultrastructural morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B-lymphoblastoid cell lines from patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. Knock down of DOCK11 recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells and primary activated T cells from healthy controls. Lastly, in line with the patients' autoimmune manifestations, we also observed abnormal regulatory T-cell (Treg) phenotype with profoundly reduced FOXP3 and IKZF2 expression. Moreover, we found reduced T-cell proliferation and impaired STAT5B phosphorylation upon interleukin-2 stimulation of the patients' lymphocytes. In conclusion, DOCK11 deficiency is a new X-linked immune-related actinopathy leading to impaired CDC42 activity and STAT5 activation, and is associated with abnormal actin cytoskeleton remodeling as well as Treg phenotype, culminating in immune dysregulation and severe early-onset autoimmunity.


Subject(s)
Immune System Diseases , Immunologic Deficiency Syndromes , Humans , Male , Actin Cytoskeleton/metabolism , Autoimmunity , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Immune System Diseases/metabolism , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , T-Lymphocytes, Regulatory
3.
J Med Genet ; 61(9): 886-890, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-38697782

ABSTRACT

BACKGROUND: Triokinase and FMN cyclase (TKFC) is a bifunctional enzyme involved in fructose metabolism. Triokinase catalyses the phosphorylation of fructose-derived glyceraldehyde (GA) and exogenous dihydroxyacetone (DHA), while FMN cyclase generates cyclic FMN. TKFC regulates the antiviral immune response by interacting with IFIH1 (MDA5). Previously reported pathogenic variants in TKFC are associated with either a multisystemic disease or isolated hypotrichosis with loose anagen hairs. METHODS: Whole-exome sequencing identified a homozygous novel variant in TKFC (c.1624G>A; p.Gly542Arg) in an individual with a complex primary immunodeficiency disorder. The variant was characterised using enzymatic assays and yeast studies of mutant recombinant proteins. RESULTS: The individual presented with chronic active Epstein-Barr virus disease and multiple bacterial and viral infections. Clinical investigations revealed hypogammaglobulinaemia, near absent natural killer cells and decreased memory B cells. Enzymatic assays showed that this variant displayed defective DHA and GA kinase activity while maintaining FMN cyclase activity. An allogenic bone marrow transplantation corrected the patient's immunodeficiency. CONCLUSION: Our report suggests that TKFC may have a role in the immunological system. The pathological features associated with this variant are possibly linked with DHA/GA kinase inactivation through a yet an unknown mechanism. This report thus adds a possible new pathway of immunometabolism to explore further.


Subject(s)
Homozygote , Female , Humans , Male , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Exome Sequencing , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/pathology , Mutation/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Infant, Newborn , Infant , Child, Preschool , Child
4.
J Allergy Clin Immunol ; 153(1): 256-264, 2024 01.
Article in English | MEDLINE | ID: mdl-37678575

ABSTRACT

BACKGROUND: The contribution of genetic factors to the severity of adult hemophagocytic lymphohistiocytosis (HLHa) remains unclear. OBJECTIVE: We sought to assess a potential link between HLHa outcomes and HLH-related gene variants. METHODS: Clinical characteristics of 130 HLHa patients (age ≥ 18 years and HScore ≥ 169) and genotype of 8 HLH-related genes (LYST, PRF1, UNC13-D, STX11, STXBP2, RAB27A, XIAP, and SAP) were collected. A total of 34 variants found in only 6 genes were selected on the basis of their frequency and criteria predicted to impair protein function. Severity was defined by refractory disease to HLH treatment, death, or transfer to an intensive care unit. RESULTS: HLHa-associated diseases (ADs) were neoplasia (n = 49 [37.7%]), autoimmune/inflammatory disease (n = 33 [25.4%]), or idiopathic when no AD was identified (n = 48 [36.9%]). Infectious events occurred in 76 (58.5%) patients and were equally distributed in all ADs. Severe and refractory HLHa were observed in 80 (61.5%) and 64 (49.2%) patients, respectively. HScore, age, sex ratio, AD, and infectious events showed no significant association with HLHa severity. Variants were identified in 71 alleles and were present in 56 (43.1%) patients. They were distributed as follows: 44 (34.4%), 9 (6.9%), and 3 (2.3%) patients carrying 1, 2, and 3 variant alleles, respectively. In a logistic regression model, only the number of variants was significantly associated with HLHa severity (1 vs 0: 3.86 [1.73-9.14], P = .0008; 2-3 vs 0: 29.4 [3.62-3810], P = .0002) and refractoriness (1 vs 0: 2.47 [1.17-5.34], P = .018; 2-3 vs 0: 13.2 [2.91-126.8], P = .0003). CONCLUSIONS: HLH-related gene variants may be key components to the severity and refractoriness of HLHa.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Adult , Humans , Adolescent , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/therapy , Alleles , Genotype , Signaling Lymphocytic Activation Molecule Associated Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics
5.
J Clin Immunol ; 44(4): 99, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619739

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by its large heterogeneity in terms of clinical presentation and severity. The pathophysiology of SLE involves an aberrant autoimmune response against various tissues, an excess of apoptotic bodies, and an overproduction of type-I interferon. The genetic contribution to the disease is supported by studies of monozygotic twins, familial clustering, and genome-wide association studies (GWAS) that have identified numerous risk loci. In the early 70s, complement deficiencies led to the description of familial forms of SLE caused by a single gene defect. High-throughput sequencing has recently identified an increasing number of monogenic defects associated with lupus, shaping the concept of monogenic lupus and enhancing our insights into immune tolerance mechanisms. Monogenic lupus (moSLE) should be suspected in patients with either early-onset lupus or syndromic lupus, in male, or in familial cases of lupus. This review discusses the genetic basis of monogenic SLE and proposes its classification based on disrupted pathways. These pathways include defects in the clearance of apoptotic cells or immune complexes, interferonopathies, JAK-STATopathies, TLRopathies, and T and B cell dysregulations.


Subject(s)
Autoimmunity , Lupus Erythematosus, Systemic , Humans , Male , Antigen-Antibody Complex , Autoimmunity/genetics , Genome-Wide Association Study , Lupus Erythematosus, Systemic/genetics , Phenotype , Female , Twin Studies as Topic
6.
J Clin Immunol ; 44(8): 185, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196411

ABSTRACT

Hereditary C1q deficiency (C1QDef) is a rare monogenic disorder leading to defective complement pathway activation and systemic lupus erythematosus (SLE)-like manifestations. The link between impairment of the complement cascade and autoimmunity remains incompletely understood. Here, we assessed type 1 interferon pathway activation in patients with C1QDef. Twelve patients with genetically confirmed C1QDef were recruited through an international collaboration. Clinical, biological and radiological data were collected retrospectively. The expression of a standardized panel of interferon stimulated genes (ISGs) in peripheral blood was measured, and the level of interferon alpha (IFNα) protein in cerebrospinal fluid (CSF) determined using SIMOA technology. Central nervous system (encompassing basal ganglia calcification, encephalitis, vasculitis, chronic pachymeningitis), mucocutaneous and renal involvement were present, respectively, in 10, 11 and 2 of 12 patients, and severe infections recorded in 2/12 patients. Elevated ISG expression was observed in all patients tested (n = 10/10), and serum and CSF IFNα elevated in 2/2 patients. Three patients were treated with Janus-kinase inhibitors (JAKi), with variable outcome; one displaying an apparently favourable response in respect of cutaneous and neurological features, and two others experiencing persistent disease despite JAKi therapy. To our knowledge, we report the largest original series of genetically confirmed C1QDef yet described. Additionally, we present a review of all previously described genetically confirmed cases of C1QDef. Overall, individuals with C1QDef demonstrate many characteristics of recognized monogenic interferonopathies: particularly, cutaneous involvement (malar rash, acral vasculitic/papular rash, chilblains), SLE-like disease, basal ganglia calcification, increased expression of ISGs in peripheral blood, and elevated levels of CSF IFNα.


Subject(s)
Complement C1q , Interferon Type I , Humans , Female , Complement C1q/genetics , Complement C1q/metabolism , Male , Interferon Type I/metabolism , Adult , Child , Adolescent , Young Adult , Signal Transduction , Middle Aged , Inflammation/genetics , Interferon-alpha , Child, Preschool , Retrospective Studies
7.
Chembiochem ; 25(15): e202400187, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38639212

ABSTRACT

Understanding the mechanisms of drug action in malarial parasites is crucial for the development of new drugs to combat infection and to counteract drug resistance. Proteomics is a widely used approach to study host-pathogen systems and to identify drug protein targets. Plasmodione is an antiplasmodial early-lead drug exerting potent activities against young asexual and sexual blood stages in vitro with low toxicity to host cells. To elucidate its molecular mechanisms, an affinity-based protein profiling (AfBPP) approach was applied to yeast and P. falciparum proteomes. New (pro-) AfBPP probes based on the 3-benz(o)yl-6-fluoro-menadione scaffold were synthesized. With optimized conditions of both photoaffinity labeling and click reaction steps, the AfBPP protocol was then applied to a yeast proteome, yielding 11 putative drug-protein targets. Among these, we found four proteins associated with oxidoreductase activities, the hypothesized type of targets for plasmodione and its metabolites, and other proteins associated with the mitochondria. In Plasmodium parasites, the MS analysis revealed 44 potential plasmodione targets that need to be validated in further studies. Finally, the localization of a 3-benzyl-6-fluoromenadione AfBPP probe was studied in the subcellular structures of the parasite at the trophozoite stage.


Subject(s)
Antimalarials , Plasmodium falciparum , Proteomics , Vitamin K 3 , Antimalarials/pharmacology , Antimalarials/chemistry , Plasmodium falciparum/drug effects , Vitamin K 3/pharmacology , Vitamin K 3/chemistry , Vitamin K 3/metabolism , Protozoan Proteins/metabolism , Photoaffinity Labels/chemistry , Photoaffinity Labels/pharmacology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Molecular Probes/chemistry , Molecular Probes/pharmacology , Proteome/analysis , Proteome/metabolism , Molecular Structure
8.
Mol Psychiatry ; 28(4): 1516-1526, 2023 04.
Article in English | MEDLINE | ID: mdl-36747095

ABSTRACT

Prenatal immune-mediated events are known risk factors for neurodevelopmental disorders in the offspring (NDD). Although the brain continues to develop for years after birth and many postnatal factors alter the regular trajectory of neurodevelopment, little is known about the impact of postnatal immune factors. To fill this gap we set up ARTEMIS, a cohort of juvenile rheumatisms and systemic autoimmune and auto-inflammatory disorders (jRSAID), and assessed their neurodevelopment. We then complemented our results with a systematic review and meta-analysis. In ARTEMIS, we used unsupervised and supervised analysis to determine the influence of jRSAID age at onset (AO) and delay in introduction of disease-modifying therapy (DMT) on NDD (NCT04814862). For the meta-analysis, we searched MEDLINE, EMBASE, PsycINFO, Cochrane, and Web of Science up to April 2022 without any restrictions on language, or article type for studies investigating the co-occurence of jRSAID and NDD (PROSPERO- CRD42020150346). 195 patients were included in ARTEMIS. Classification tree isolated 3 groups of patients (i) A low-risk group (AO > 130 months (m)) with 5% of NDD (ii) A medium-risk group (AO < 130 m and DMT < 2 m) with 20% of NDD (iii) and a high-risk-group (AO < 130 m and DMT > 2 m) with almost half of NDD. For the meta-analysis, 18 studies encompassing a total of (i) 46,267 children with jRSAID; 213,930 children with NDD, and 6,213,778 children as controls were included. We found a positive association between jRSAID and NDD with an OR = 1.44 [95% CI 1.31; 1.57] p < 0.0001, [I2 = 66%, Tau2 = 0.0067, p < 0.01]. Several sensitivity analyses were performed without changing the results. Metaregression confirmed the importance of AO (p = 0.005). Our study supports the association between jRSAID and NDD. AO and DMT have pivotal roles in the risk of developing NDD. We plead for systematic screening of NDD in jRSAID to prevent the functional impact of NDD.


Subject(s)
Neurodevelopmental Disorders , Rheumatic Diseases , Child , Pregnancy , Female , Humans , Language , Risk Factors , Inflammation , Multicenter Studies as Topic
9.
Lupus ; 33(4): 328-339, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38315109

ABSTRACT

OBJECTIVE: Juvenile systemic lupus erythematosus (j-SLE) is a rare chronic auto-immune disease involving several organs. Neuropsychiatric (NP) SLE (NPSLE) is frequent in j-SLE and associated with increased morbidity/mortality. Although NPSLE classification criteria exist, attributing NP features to j-SLE remains a major challenge. The study objective is to thoroughly describe j-NPSLE patients and assist in their diagnosis. METHODS: This is a 4-year retrospective monocentric study of j-SLE patients. NP events were attributed to j-SLE using standardised diagnostic criteria and multidisciplinary paediatric clinical expertise. Clinical features, brain magnetic resonance imaging (MRI)s and samples analysis including cerebrospinal fluid were assessed. A risk of j-NPSLE score was developed based on multivariable logistic regression analysis. RESULTS: Of 39 patients included, 44% were identified as having j-NPSLE. J-NPSLE diagnosis was established at the onset of j-SLE in 59% of patients. In addition to frequent kidney involvement (76%) and chilblains (65%), all j-NPSLE patients displayed psychiatric features: cognitive symptoms (82%), hallucinations (76%), depressed mood (35%), acute confused state (18%) and catatonia (12%). Neurological involvement was often mild and nonspecific, with headache (53%) in about half of the patients. The main features reported on brain MRI were nonspecific T2/FLAIR white matter hyperintensities (65%), and cerebral atrophy (88%). Upon immunosuppressive treatment, clinical improvement of NP features was observed in all j-NPSLE patients. The score developed to attribute j-NPSLE probability, guide further investigations and appropriate treatments is based on hallucinations, memory, sleep and renal involvement (Sensitivity: 0.95 Specificity: 0.85). Cerebrospinal fluid (CSF) neopterin assessment increases the score sensitivity and specificity. CONCLUSION: Physicians should carefully and systematically assess the presence of NP features at diagnosis and early stages of j-SLE. For j-NPSLE patients with predominant psychiatric features, a multidisciplinary collaboration, including psychiatrists, is essential for the diagnosis, management and follow-up.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Vasculitis, Central Nervous System , Humans , Child , Lupus Vasculitis, Central Nervous System/pathology , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/pathology , Retrospective Studies , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Hallucinations/complications , Hallucinations/pathology
10.
J Clin Rheumatol ; 30(7): 297-299, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39186594

ABSTRACT

BACKGROUND: Transitioning from pediatric to adult care is a critical step for individuals with autoinflammatory diseases, requiring effective programs to ensure continuity of care and disease management. Despite various recommendations, the effectiveness of transition programs, particularly in monogenic autoinflammatory diseases, remains understudied. METHODS: A single-center medical records review study was conducted at the French National Reference Center for Adult Autoinflammatory Diseases in Tenon Hospital from 2017 to 2023. All patients who had consulted for the first time between the ages of 15 and 30 years and had received care for an autoinflammatory disease during childhood were included. The patients were classified according to whether they had undergone a transition, defined as either no transition, simple transition (referral letter), or joint transition (pediatrician and adult physician consultation). RESULTS: One hundred eleven patients (median age, 18 years) were included. Patients who consulted without transition started adult follow-up and were followed up less regularly than those who underwent the transition process ( p < 0.001 and p = 0.028). In patients with familial Mediterranean fever, the absence of a formal transition was associated with poorer disease control at baseline ( p = 0.019). The type of transition did not impact disease control during follow-up. CONCLUSIONS: Participation in a transition program is associated with earlier and more regular follow-up in adulthood. Although transition type did not significantly impact disease control during follow-up in familial Mediterranean fever, the potential benefit of joint consultation extends beyond consultation frequency and disease outcomes, encompassing patient perspectives and self-management abilities. This study highlights the significance of collaborative transition programs in AIDs.


Subject(s)
Transition to Adult Care , Humans , Transition to Adult Care/organization & administration , Female , Male , Adult , France , Adolescent , Young Adult , Hereditary Autoinflammatory Diseases/therapy , Hereditary Autoinflammatory Diseases/diagnosis , Referral and Consultation/statistics & numerical data , Referral and Consultation/organization & administration , Familial Mediterranean Fever/therapy , Familial Mediterranean Fever/diagnosis , Familial Mediterranean Fever/physiopathology , Retrospective Studies
11.
Am J Hum Genet ; 106(2): 256-263, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004446

ABSTRACT

We report an inborn error of metabolism caused by TKFC deficiency in two unrelated families. Rapid trio genome sequencing in family 1 and exome sequencing in family 2 excluded known genetic etiologies, and further variant analysis identified rare homozygous variants in TKFC. TKFC encodes a bifunctional enzyme involved in fructose metabolism through its glyceraldehyde kinase activity and in the generation of riboflavin cyclic 4',5'-phosphate (cyclic FMN) through an FMN lyase domain. The TKFC homozygous variants reported here are located within the FMN lyase domain. Functional assays in yeast support the deleterious effect of these variants on protein function. Shared phenotypes between affected individuals with TKFC deficiency include cataracts and developmental delay, associated with cerebellar hypoplasia in one case. Further complications observed in two affected individuals included liver dysfunction and microcytic anemia, while one had fatal cardiomyopathy with lactic acidosis following a febrile illness. We postulate that deficiency of TKFC causes disruption of endogenous fructose metabolism leading to generation of by-products that can cause cataract. In line with this, an affected individual had mildly elevated urinary galactitol, which has been linked to cataract development in the galactosemias. Further, in light of a previously reported role of TKFC in regulating innate antiviral immunity through suppression of MDA5, we speculate that deficiency of TKFC leads to impaired innate immunity in response to viral illness, which may explain the fatal illness observed in the most severely affected individual.


Subject(s)
Cataract/etiology , Cerebellum/abnormalities , Developmental Disabilities/etiology , Mutation , Nervous System Malformations/etiology , Phosphorus-Oxygen Lyases/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Alleles , Amino Acid Sequence , Cataract/pathology , Cerebellum/pathology , Child, Preschool , Developmental Disabilities/pathology , Female , Homozygote , Humans , Infant , Male , Nervous System Malformations/pathology , Pedigree , Phenotype , Phosphorylation , Sequence Homology , Exome Sequencing
12.
J Clin Immunol ; 43(3): 615-624, 2023 04.
Article in English | MEDLINE | ID: mdl-36469191

ABSTRACT

INTRODUCTION: Juvenile systemic lupus erythematosus (j-SLE) is a rare chronic autoimmune disease affecting multiple organs. Ranging from minor features, such as headache or mild cognitive impairment, to serious and life-threatening presentations, j-neuropsychiatric SLE (j-NPSLE) is a therapeutic challenge. Thus, the diagnosis of NPSLE remains difficult, especially in pediatrics, with no specific biomarker of the disease yet validated. OBJECTIVES: To identify central nervous system (CNS) disease biomarkers of j-NPSLE. METHODS: A 5-year retrospective tertiary reference monocentric j-SLE study. A combination of standardized diagnostic criteria and multidisciplinary pediatric clinical expertise was combined to attribute NP involvement in the context of j-SLE. Neopterin and interferon-alpha (IFN-α) protein levels in cerebrospinal fluid (CSF) were assessed, together with routine biological and radiological investigations. RESULTS: Among 51 patients with j-SLE included, 39% presented with j-NPSLE. J-NPSLE was diagnosed at onset of j-SLE in 65% of patients. No specific routine biological or radiological marker of j-NPSLE was identified. However, CSF neopterin levels were significantly higher in active j-NPSLE with CNS involvement than in j-SLE alone (p = 0.0008). Neopterin and IFN-α protein levels in CSF were significantly higher at diagnosis of j-NPSLE with CNS involvement than after resolution of NP features (respectively p = 0.0015 and p = 0.0010) upon immunosuppressive treatment in all patients tested (n = 10). Both biomarkers correlated strongly with each other (Rs = 0.832, p < 0.0001, n = 23 paired samples). CONCLUSION: CSF IFN-α and neopterin constitute promising biomarkers useful in the diagnosis and monitoring of activity in j-NPSLE.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Vasculitis, Central Nervous System , Humans , Child , Retrospective Studies , Neopterin , Neuroinflammatory Diseases , Lupus Erythematosus, Systemic/diagnosis , Biomarkers
13.
J Clin Immunol ; 43(6): 1436-1447, 2023 08.
Article in English | MEDLINE | ID: mdl-37171742

ABSTRACT

The paradigm type I interferonopathy Aicardi-Goutières syndrome (AGS) is most typically characterized by severe neurological involvement. AGS is considered an immune-mediated disease, poorly responsive to conventional immunosuppression. Premised on a chronic enhancement of type I interferon signaling, JAK1/2 inhibition has been trialed in AGS, with clear improvements in cutaneous and systemic disease manifestations. Contrastingly, treatment efficacy at the level of the neurological system has been less conclusive. Here, we report our real-word approach study of JAK1/2 inhibition in 11 patients with AGS, providing extensive assessments of clinical and radiological status; interferon signaling, including in cerebrospinal fluid (CSF); and drug concentrations in blood and CSF. Over a median follow-up of 17 months, we observed a clear benefit of JAK1/2 inhibition on certain systemic features of AGS, and reproduced results reported using the AGS neurologic severity scale. In contrast, there was no change in other scales assessing neurological status; using the caregiver scale, only patient comfort, but no other domain of everyday-life care, was improved. Serious bacterial infections occurred in 4 out of the 11 patients. Overall, our data lead us to conclude that other approaches to treatment are urgently required for the neurologic features of AGS. We suggest that earlier diagnosis and adequate central nervous system penetration likely remain the major factors determining the efficacy of therapy in preventing irreversible brain damage, implying the importance of early and rapid genetic testing and the consideration of intrathecal drug delivery.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , Humans , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/drug therapy , Autoimmune Diseases of the Nervous System/genetics , Nervous System Malformations/diagnosis , Nervous System Malformations/drug therapy , Nervous System Malformations/genetics , Signal Transduction , Genetic Testing
14.
Proc Natl Acad Sci U S A ; 117(17): 9329-9337, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32291341

ABSTRACT

The organization of the mitochondrial electron transport chain proteins into supercomplexes (SCs) is now undisputed; however, their assembly process, or the role of differential expression isoforms, remain to be determined. In Saccharomyces cerevisiae, cytochrome c oxidase (CIV) forms SCs of varying stoichiometry with cytochrome bc1 (CIII). Recent studies have revealed, in normoxic growth conditions, an interface made exclusively by Cox5A, the only yeast respiratory protein that exists as one of two isoforms depending on oxygen levels. Here we present the cryo-EM structures of the III2-IV1 and III2-IV2 SCs containing the hypoxic isoform Cox5B solved at 3.4 and 2.8 Å, respectively. We show that the change of isoform does not affect SC formation or activity, and that SC stoichiometry is dictated by the level of CIII/CIV biosynthesis. Comparison of the CIV5B- and CIV5A-containing SC structures highlighted few differences, found mainly in the region of Cox5. Additional density was revealed in all SCs, independent of the CIV isoform, in a pocket formed by Cox1, Cox3, Cox12, and Cox13, away from the CIII-CIV interface. In the CIV5B-containing hypoxic SCs, this could be confidently assigned to the hypoxia-induced gene 1 (Hig1) type 2 protein Rcf2. With conserved residues in mammalian Hig1 proteins and Cox3/Cox12/Cox13 orthologs, we propose that Hig1 type 2 proteins are stoichiometric subunits of CIV, at least when within a III-IV SC.


Subject(s)
Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cryoelectron Microscopy/methods , Electron Transport Complex III/chemistry , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/physiology , Hypoxia/metabolism , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Protein Isoforms , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology
15.
Proc Natl Acad Sci U S A ; 117(17): 9349-9355, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32291342

ABSTRACT

Mitochondria metabolize almost all the oxygen that we consume, reducing it to water by cytochrome c oxidase (CcO). CcO maximizes energy capture into the protonmotive force by pumping protons across the mitochondrial inner membrane. Forty years after the H+/e- stoichiometry was established, a consensus has yet to be reached on the route taken by pumped protons to traverse CcO's hydrophobic core and on whether bacterial and mitochondrial CcOs operate via the same coupling mechanism. To resolve this, we exploited the unique amenability to mitochondrial DNA mutagenesis of the yeast Saccharomyces cerevisiae to introduce single point mutations in the hydrophilic pathways of CcO to test function. From adenosine diphosphate to oxygen ratio measurements on preparations of intact mitochondria, we definitely established that the D-channel, and not the H-channel, is the proton pump of the yeast mitochondrial enzyme, supporting an identical coupling mechanism in all forms of the enzyme.


Subject(s)
Electron Transport Complex IV/chemistry , Heme/chemistry , Oxidoreductases/chemistry , Bacteria/metabolism , Copper/chemistry , Copper/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Ion Transport , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Oxygen/metabolism , Proton Pumps/metabolism , Protons , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
16.
Pestic Biochem Physiol ; 189: 105313, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36549825

ABSTRACT

Picolinamide and strobilurin fungicides bind to the Qi and Qo sites on cytochrome b, respectively, and target many of the same plant pathogens. Using Saccharomyces cerevisiae as a model system, we explore effects of amino acid changes at each site on sensitivity to a fungicide acting at the opposite site and examine the relationship between altered sensitivity and growth penalty. In addition, double mutants containing the G143A or F129L mutations responsible for strobilurin resistance in combination with Qi site mutations that confer resistance to picolinamides are characterized in terms of their sensitivity to QiI and QoI fungicides and growth rate. Mutants containing amino acid changes at the Qo site varied in their growth rate and sensitivity to the picolinamide CAS-649, and increased sensitivity was associated with a greater growth penalty. Conversely, changes at the Qi site affected sensitivity to azoxystrobin and also showed a correlation between increased sensitivity and reduced growth. There was no overall correlation between resistance to azoxystrobin and CAS-649 among mutants, however negative cross-resistance occurred in the case of mutations which conferred resistance to either compound and also carried a growth penalty. These results suggest the use of QoI fungicides to delay the emergence of pathogen resistance to QiIs, and vice versa. Double mutants containing G143A or F129L in combination with Qi site changes N31K, G37C/V or L198F that cause resistance to picolinamides generally exhibited lower resistance factors for both azoxystrobin and CAS-649 than corresponding resistant strains with a single mutation. Reduced growth was observed for all F129L-containing double mutants, whereas the growth rate of double mutants containing G143A was significantly reduced only by the Qi site mutations N31K and G37V that confer a larger growth penalty. Our results suggest that resistance to picolinamides in pathogens could emerge more readily in a strobilurin-sensitive genetic background than in a strobilurin-resistant one.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/pharmacology , Strobilurins , Saccharomyces cerevisiae/genetics , Mutation , Drug Resistance, Fungal/genetics
17.
J Allergy Clin Immunol ; 149(1): 369-378, 2022 01.
Article in English | MEDLINE | ID: mdl-33991581

ABSTRACT

BACKGROUND: Accurate, detailed, and standardized phenotypic descriptions are essential to support diagnostic interpretation of genetic variants and to discover new diseases. The Human Phenotype Ontology (HPO), extensively used in rare disease research, provides a rich collection of vocabulary with standardized phenotypic descriptions in a hierarchical structure. However, to date, the use of HPO has not yet been widely implemented in the field of inborn errors of immunity (IEIs), mainly due to a lack of comprehensive IEI-related terms. OBJECTIVES: We sought to systematically review available terms in HPO for the depiction of IEIs, to expand HPO, yielding more comprehensive sets of terms, and to reannotate IEIs with HPO terms to provide accurate, standardized phenotypic descriptions. METHODS: We initiated a collaboration involving expert clinicians, geneticists, researchers working on IEIs, and bioinformaticians. Multiple branches of the HPO tree were restructured and extended on the basis of expert review. Our ontology-guided machine learning coupled with a 2-tier expert review was applied to reannotate defined subgroups of IEIs. RESULTS: We revised and expanded 4 main branches of the HPO tree. Here, we reannotated 73 diseases from 4 International Union of Immunological Societies-defined IEI disease subgroups with HPO terms. We achieved a 4.7-fold increase in the number of phenotypic terms per disease. Given the new HPO annotations, we demonstrated improved ability to computationally match selected IEI cases to their known diagnosis, and improved phenotype-driven disease classification. CONCLUSIONS: Our targeted expansion and reannotation presents enhanced precision of disease annotation, will enable superior HPO-based IEI characterization, and hence benefit both IEI diagnostic and research activities.


Subject(s)
Genetic Diseases, Inborn/classification , Immune System Diseases/classification , Rare Diseases/classification , Biological Ontologies , Humans , Phenotype
18.
Environ Microbiol ; 24(3): 1117-1132, 2022 03.
Article in English | MEDLINE | ID: mdl-34490974

ABSTRACT

Acquired resistance is a threat to antifungal efficacy in medicine and agriculture. The diversity of possible resistance mechanisms and highly adaptive traits of pathogens make it difficult to predict evolutionary outcomes of treatments. We used directed evolution as an approach to assess the resistance risk to the new fungicide fenpicoxamid in the wheat pathogenic fungus Zymoseptoria tritici. Fenpicoxamid inhibits complex III of the respiratory chain at the ubiquinone reduction site (Qi site) of the mitochondrially encoded cytochrome b, a different site than the widely used strobilurins which inhibit the same complex at the ubiquinol oxidation site (Qo site). We identified the G37V change within the cytochrome b Qi site as the most likely resistance mechanism to be selected in Z. tritici. This change triggered high fenpicoxamid resistance and halved the enzymatic activity of cytochrome b, despite no significant penalty for in vitro growth. We identified negative cross-resistance between isolates harbouring G37V or G143A, a Qo site change previously selected by strobilurins. Double mutants were less resistant to both QiIs and quinone outside inhibitors compared to single mutants. This work is a proof of concept that experimental evolution can be used to predict adaptation to fungicides and provides new perspectives for the management of QiIs.


Subject(s)
Ascomycota , Fungicides, Industrial , Ascomycota/genetics , Cytochromes b/genetics , Drug Resistance, Fungal/genetics , Fungicides, Industrial/pharmacology , Lactones , Plant Diseases/microbiology , Pyridines , Strobilurins/pharmacology
19.
Environ Microbiol ; 24(10): 4725-4737, 2022 10.
Article in English | MEDLINE | ID: mdl-36065993

ABSTRACT

SARS-CoV-2 diagnosis is a cornerstone for the management of coronavirus disease 2019 (COVID-19). Numerous studies have assessed saliva performance over nasopharyngeal sampling (NPS), but data in young children are still rare. We explored saliva performance for SARS-CoV-2 detection by RT-PCR according to the time interval from initial symptoms or patient serological status. We collected 509 NPS and saliva paired samples at initial diagnosis from 166 children under 12 years of age (including 57 children under 6), 106 between 12 and 17, and 237 adults. In children under 12, overall detection rate for SARS-CoV-2 was comparable in saliva and NPS, with an overall agreement of 89.8%. Saliva sensitivity was significantly lower than that of NPS (77.1% compared to 95.8%) in pre-school and school-age children but regained 96% when considering seronegative children only. This pattern was also observed to a lesser degree in adolescents but not in adults. Sensitivity of saliva was independent of symptoms, in contrary to NPS, whose sensitivity decreased significantly in asymptomatic subjects. Performance of saliva is excellent in children under 12 at early stages of infection. This reinforces saliva as a collection method for early and unbiased SARS-CoV-2 detection and a less invasive alternative for young children.


Subject(s)
COVID-19 Testing , COVID-19 , SARS-CoV-2 , Saliva , Adolescent , Adult , Child , Child, Preschool , Humans , Clinical Laboratory Techniques/methods , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing/methods , Nasopharynx/virology , Saliva/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
20.
Rheumatology (Oxford) ; 61(5): 2088-2094, 2022 05 05.
Article in English | MEDLINE | ID: mdl-34554243

ABSTRACT

OBJECTIVES: To evaluate the long-term efficacy and safety of canakinumab in patients with mevalonate kinase deficiency during the open label extension (weeks 41-113) of the randomized controlled CLUSTER trial. METHODS: During a 72-week period, patients received open-label canakinumab 150 or 300 mg, every 4 or 8 weeks. The disease activity was evaluated every 8 weeks using physician global assessment and counting the number of flares. Concentrations of CRP and serum amyloid A protein were measured. The safety was studied by determination and classification of observed adverse events. The safety and efficacy were analysed separately in three subgroups of patients receiving a cumulative dose of less than <35 mg/kg, ≥35 to <70 mg/kg or ≥70 mg/kg. RESULTS: Of the 74 patients who started the CLUSTER study, 66 entered Epoch 4 and 65 completed it. During the 72-week period, 42 (64%) patients experienced no flares, while 13 (20%) had one flare, as compared with a median of 12 flares per year reported at baseline. Low physician global assessment scores were seen at the end of the study for all groups with >90% reporting minimal disease activity or none at all. Median CRP concentrations were consistently equal or lower than 10 mg/l, while median serum amyloid A concentrations remained only slightly above the normal range of 10 mg/l. The study showed no new or unexpected adverse events. CONCLUSION: Canakinumab proved effective to control disease activity and prevent flares in mevalonate kinase deficiency during the 72-week study period. No new safety concerns were reported. TRIAL REGISTRATION: NCT02059291. https://clinicaltrials.gov.


Subject(s)
Mevalonate Kinase Deficiency , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Humans , Mevalonate Kinase Deficiency/drug therapy , Serum Amyloid A Protein , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL