Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Chem Phys ; 161(2)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-38990119

ABSTRACT

We present a detailed study on the effects of oxygen on the photoluminescence properties of CdSe/CdS quantum dots (QDs). We investigated the role of oxygen by performing confocal measurements on thin films as well as on single particles while rapidly exchanging the gaseous environment between oxygen and an inert gas atmosphere. We found that the deionization of negatively charged particles by oxygen depends on both the excitation power and the shell thickness of the QDs. For QDs with thin shells, which exhibit strong photoluminescence blinking, we observed that the presence of oxygen affects both band-edge carrier blinking and hot-carrier blinking.

2.
Nano Lett ; 23(4): 1313-1319, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36758116

ABSTRACT

We report on a novel plasma-assisted approach for the deposition of free-standing two-dimensional superstructures via directed assembly of copper-sulfide nanoplatelets in the gas phase. For this, the copper-organic complex bis-[bis(N,N-diethyldithiocarbamato)-copper(II)] is thermally evaporated and transported into a capacitively coupled rf plasma to form two-dimensional nanoplatelets upon fragmentation. On a substrate, the highly anisotropic platelets are attached in a directed edge-to-edge configuration. We found that a high substrate temperature of 400 °C is necessary for the 2D vertical growth of copper sulfide. Using plasma reinforces the directional assembly and leads to nanowalls which are several micrometers high with the thickness of a single nanoplatelet. The morphology and crystallographic composition of the emerging superstructures were extensively investigated via scanning and transmission electron microscopy as well as electron diffraction. The data reveal the (010) plane to be the preferred axis for the arrangement of the nanoplatelets.

3.
Nano Lett ; 23(2): 667-676, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36607192

ABSTRACT

Despite broad interest in colloidal lead halide perovskite nanocrystals (LHP NCs), their intrinsic fast growth has prevented controlled synthesis of small, monodisperse crystals and insights into the reaction mechanism. Recently, a much slower synthesis of LHP NCs with extreme size control has been reported, based on diluted TOPO/PbBr2 precursors and a diisooctylphosphinate capping ligand. We report new insights into the nucleation, growth, and self-assembly in this reaction, obtained by in situ synchrotron-based small-angle X-ray scattering and optical absorption spectroscopy. We show that dispersed 3 nm Cs[PbBr3] agglomerates are the key intermediate species: first, they slowly nucleate into crystals, and then they release Cs[PbBr3] monomers for further growth of the crystals. We show the merits of a low Cs[PbBr3] monomer concentration for the reaction based on oleate ligands. We also examine the spontaneous superlattice formation mechanism occurring when the growing nanocrystals in the solvent reach a critical size of 11.6 nm.

4.
J Am Chem Soc ; 143(25): 9405-9414, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34138547

ABSTRACT

A ligand exchange strategy has been employed to understand the role of ligands on the structural and optical properties of atomically precise 29 atom silver nanoclusters (NCs). By ligand optimization, ∼44-fold quantum yield (QY) enhancement of Ag29(BDT)12-x(DHLA)x NCs (x = 1-6) was achieved, where BDT and DHLA refer to 1,3-benzene-dithiol and dihydrolipoic acid, respectively. High-resolution mass spectrometry was used to monitor ligand exchange, and structures of the different NCs were obtained through density functional theory (DFT). The DFT results from Ag29(BDT)11(DHLA) NCs were further experimentally verified through collisional cross-section (CCS) analysis using ion mobility mass spectrometry (IM MS). An excellent match in predicted CCS values and optical properties with the respective experimental data led to a likely structure of Ag29(DHLA)12 NCs consisting of an icosahedral core with an Ag16S24 shell. Combining the experimental observation with DFT structural analysis of a series of atomically precise NCs, Ag29-yAuy(BDT)12-x(DHLA)x (where y, x = 0,0; 0,1; 0,12 and 1,12; respectively), it was found that while the metal core is responsible for the origin of photoluminescence (PL), ligands play vital roles in determining their resultant PLQY.

5.
Langmuir ; 33(21): 5253-5260, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28489388

ABSTRACT

Microemulsion (water-in-oil) methods enable the encapsulation of individual nanoparticles into SiO2 spheres. The major drawbacks of this method, when applied for silica encapsulation of anisotropic nanorods (NRs), are spatially unequal silica growth and long reaction times (24 h at least). In this work, various tetraalkoxysilanes [tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), and tetrapropyl orthosilicate (TPOS)] with different alkyl-chain lengths were used as silica precursors in attempt to tune the silanization behavior of CdSe/CdS NRs in a microemulsion system. We find enhanced spatial homogeneity of silica growth with decreasing alkyl-chain length of the tetraalkoxysilanes. In particular, by use of TMOS as the precursor, NRs can be fully encapsulated in a continuous thin (≤5 nm) silica shell within only 1 h reaction time. Surprisingly, the thin silica shell showed a superior shielding ability to acidic environment, even compared to the 30 nm thick shell prepared by use of TEOS. Our investigations suggest that the lower steric hindrance of TMOS compared to TEOS or TPOS strongly promotes homogeneous growth of the silica shells, while its increased hydrolysis rate decreases the porosity of these shells.

6.
J Am Chem Soc ; 137(5): 2073-84, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25594869

ABSTRACT

The impact of strain on the optical properties of semiconductor quantum dots (QDs) is fundamentally important while still awaiting detailed investigation. CdTe/CdS core/shell QDs represent a typical strained system due to the substantial lattice mismatch between CdTe and CdS. To probe the strain-related effects, aqueous CdTe/CdS QDs were synthesized by coating different sized CdTe QD cores with CdS shells upon the thermal decomposition of glutathione as a sulfur source under reflux. The shell growth was carefully monitored by both steady-state absorption and fluorescence spectroscopy and transient fluorescence spectroscopy. In combination with structural analysis, the band alignments as a consequence of the strain were modified based on band deformation potential theory. By further taking account of these strain-induced band shifts, the effective mass approximation (EMA) model was modified to simulate the electronic structure, carrier spatial localization, and electron-hole wave function overlap for comparing with experimentally derived results. In particular, the electron/hole eigen energies were predicted for a range of structures with different CdTe core sizes and different CdS shell thicknesses. The overlap of electron and hole wave functions was further simulated to reveal the impact of strain on the electron-hole recombination kinetics as the electron wave function progressively shifts into the CdS shell region while the hole wave function remains heavily localized in CdTe core upon the shell growth. The excellent agreement between the strain-modified EMA model with the experimental data suggests that strain exhibits remarkable effects on the optical properties of mismatched core/shell QDs by altering the electronic structure of the system.


Subject(s)
Cadmium Compounds/chemistry , Quantum Dots/chemistry , Quantum Theory , Sulfides/chemistry , Tellurium/chemistry , Electrons , Kinetics , Models, Molecular , Molecular Conformation , Optical Phenomena
7.
Nano Lett ; 14(11): 6655-9, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25343231

ABSTRACT

One-dimensional semiconductor nanostructures combine electron mobility in length direction with the possibility of tailoring the physical properties by confinement effects in radial direction. Here we show that thin CdSe quantum nanowires exhibit low-temperature fluorescence spectra with a specific universal structure of several sharp lines. The structure strongly resembles the pattern of bulk spectra but show a diameter-dependent shift due to confinement effects. Also the fluorescence shows a pronounced complex blinking behavior with very different blinking dynamics of different emission lines in one and the same spectrum. Time- and space-resolved optical spectroscopy are combined with high-resolution transmission electron microscopy of the very same quantum nanowires to establish a detailed structure-property relationship. Extensive numerical simulations strongly suggest that excitonic complexes involving donor and acceptor sites are the origin of the feature-rich spectra.


Subject(s)
Cadmium Compounds/chemistry , Fluorescent Dyes/chemistry , Nanowires/chemistry , Selenium Compounds/chemistry , Fluorescence , Nanowires/ultrastructure , Quantum Theory
8.
Angew Chem Int Ed Engl ; 54(42): 12468-71, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26136318

ABSTRACT

Seeded emulsion polymerization is a powerful universal method to produce ultrasmall multifunctional magnetic nanohybrids. In a two-step procedure, iron oxide nanocrystals were initially encapsulated in a polystyrene (PS) shell and subsequently used as beads for a controlled assembly of elongated quantum dots/quantum rods (QDQRs). The synthesis of a continuous PS shell allows the whole construct to be fixed and the composition of the nanohybrid to be tuned. The fluorescence of the QDQRs and magnetism of iron oxide were perfectly preserved, as confirmed by single-particle investigation, fluorescence decay measurements, and relaxometry. Bio-functionalization of the hybrids was straightforward, involving copolymerization of appropriate affinity ligands as shown by immunoblot analysis. Additionally, the universality of this method was shown by the embedment of a broad scale of NPs.

9.
Phys Chem Chem Phys ; 16(22): 10444-55, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24788878

ABSTRACT

The optical properties of single colloidal semiconductor nanoparticles (NPs) are considerably influenced by the direct environment of the NPs. Here, the influence of different liquid and solid glycol matrices on CdSe-based NPs is investigated. Since the fluorescence of individual NPs varies from one NP to another, it is highly desirable to study the very same individual NPs in different matrices. This was accomplished by immobilizing NPs in a liquid cell sample holder or in microfluidic devices. The samples have been investigated by space-resolved wide-field fluorescence microscopy and energy- and time-resolved confocal scanning fluorescence microscopy with respect to fluorescence intensities, emission energies, blinking behavior, and fluorescence decay dynamics of individual NPs. During the measurements the NPs were exposed to air, to liquid ethylene glycols H(OCH2CH2)nOH (also called EGn) with different chain lengths (1 ≤ n ≤ 7), to liquid 2-methylpentane-2,3-diol, or to solid polyethylene oxide. It was found that EG6-7 (also known as PEG 300) is very well suited as a liquid matrix or solvent for experiments that correlate chemical and physical modifications of the surface and of the immediate environment of individual NPs to their fluorescence properties since it leads to intense and stable fluorescence emission of the NPs.

10.
ACS Nano ; 18(27): 18036-18045, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38916252

ABSTRACT

Cation exchange is a versatile method for modifying the material composition and properties of nanostructures. However, control of the degree of exchange and material properties is difficult at the single-particle level. Successive cation exchange from CdSe to Ag2Se has been utilized here on the same individual nanowires to monitor the change of electronic properties in field-effect transistor devices. The transistors were fabricated by direct synthesis of CdSe nanowires on prepatterned substrates followed by optical lithography. The devices were then subjected to cation exchange by submerging them in an exchange solution containing silver nitrate. By removal of the devices from solution and probing the electrical transport properties at different times, the change in electronic properties of individual nanowires could be monitored throughout the entire exchange reaction from CdSe to Ag2Se. Transistor characterization revealed that the electrical conductivity can be tuned by up to 8 orders of magnitude and the charge-carrier mobility by 7 orders of magnitude. While analysis of the material composition by energy dispersive X-ray spectroscopy confirmed successful cation exchange from CdSe to Ag2Se, X-ray fluorescence spectroscopy proved that cation exchange also took place below the contacts. The method presented here demonstrates an efficient way to tune the material composition and access the resulting properties nondestructively at the single-particle level. This approach can be readily applied to many other material systems and can be used to study the electrical properties of nanostructures as a function of material composition or to optimize nanostructure-based devices after fabrication.

11.
Adv Sci (Weinh) ; 11(2): e2301873, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38009788

ABSTRACT

Small voids in the absorber layer of thin-film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample-preparation artifacts. Here, synchrotron imaging is performed on a fully operational as-deposited solar cell containing a few tens of voids. By measuring operando current and X-ray excited optical luminescence, the local electrical and optical performance in the proximity of the voids are estimated, and via ptychographic tomography, the depth in the absorber of the voids is quantified. Besides, the complex network of material-deficit structures between the absorber and the top electrode is highlighted. Despite certain local impairments, the massive presence of voids in the absorber suggests they only have a limited detrimental impact on performance.

12.
J Am Chem Soc ; 135(49): 18520-7, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24245969

ABSTRACT

Semiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters. Since the NW diameter is governed by the dimension of the Bi catalyst, the electrodeposition is a reliable method to synthesize nanowires directly on substrates with a desired size and density. We show that the density can be adjusted from individual NWs on several square micrometer to very dense NW networks. The diameter can be controlled between thick nanowires above 100 nm to very thin NW of 7 nm in diameter, which is well below the respective exciton dimension. Hence, especially the thinnest NWs exhibit diameter-dependent photoluminescence energies as a result of quantum confinement effects in the radial dimension.

13.
Chem Mater ; 35(3): 1238-1248, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36818587

ABSTRACT

Cation exchange is known to occur during the synthesis of colloidal semiconductor heteronanoparticles, affecting their band gap and thus altering their optoelectronic properties. It is often neglected, especially when anisotropic heterostructures are discussed. We present a study on the role of cation exchange inevitably occurring during the growth of anisotropic dot-in-rod structures consisting of a spherical ZnSe core enclosed by a rod-shaped CdS shell. The material combination exhibits a type-II band alignment. Two reactions are compared: the shell-growth reaction of CdS on ZnSe and an exchange-only reaction of ZnSe cores to CdSe. Transmission electron microscopy and a comprehensive set of optical spectroscopy data, including linear and time-resolved absorption and fluorescence data, prove that cation exchange from ZnSe to CdSe is the dominant process in the initial stages of the shell-growth reaction. The degree of cation exchange before significant shell growth starts was determined to be about 50%, highlighting the importance of cation exchange during the heteronanostructure growth.

14.
Nano Lett ; 11(7): 2672-7, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21630664

ABSTRACT

A combination of electrostatic force microscopy and optical microscopy was used to investigate the charge state of individual CdSe nanowires upon local illumination with a focused laser beam. The nanowires were found to be positively charged at the excitation spot and negatively charged at the distant end(s). For high laser powers, the amount of accumulated charges increases logarithmically with the laser power. These effects are described by a diffusion-based model where the results are in good agreement with the experimentally observed effects. On the basis of this model the charge imbalance along the nanowire should establish in the course of nanoseconds. The net charge separation within homogeneous nanowires upon local illumination is of importance for several electronic devices.


Subject(s)
Cadmium Compounds/chemistry , Lasers , Nanowires/chemistry , Selenium Compounds/chemistry , Nanotechnology , Particle Size , Surface Properties
15.
ACS Appl Mater Interfaces ; 14(8): 10656-10668, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35166537

ABSTRACT

Nanomaterials with a defined composition and structure can be synthesized by exploiting natural templates or biomolecular matrices. In the present work, we use protein nanocages derived from human ferritin as a nanoscale building block for the assembly of gold nanoparticles and fluorescent molecules in the solid state. As a generalizable strategy, we show that prior to material synthesis, the cargo can be encapsulated into the protein nanocages using a dis- and reassembly approach. Toward this end, a new ligand system for gold nanoparticles enables efficient encapsulation of these particles into the nanocages. The gold nanoparticle-loaded protein nanocages are co-assembled with fluorophore-loaded protein nanocages. Binary superlattices are formed because two oppositely charged ferritin nanocages are used as templates for the assembly. The binary crystals show strong exciton-plasmon coupling between the encapsulated fluorophores and gold nanoparticles, which was spatially resolved with fluorescence lifetime imaging. The strategy outlined here offers a modular approach toward binary nanomaterials with highly ordered building blocks.


Subject(s)
Metal Nanoparticles , Nanostructures , Ferritins/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Nanostructures/chemistry
16.
ACS Appl Mater Interfaces ; 14(16): 18806-18815, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35413175

ABSTRACT

Mn2+-doped semiconductor nanocrystals with tuned location and concentration of Mn2+ ions can yield diverse coupling regimes, which can highly influence their optical properties such as emission wavelength and photoluminescence (PL) lifetime. However, investigation on the relationship between the Mn2+ concentration and the optical properties is still challenging because of the complex interactions of Mn2+ ions and the host and between the Mn2+ ions. Here, atomically flat ZnS nanoplatelets (NPLs) with uniform thickness were chosen as matrixes for Mn2+ doping. Using time-resolved (TR) PL spectroscopy and density functional theory (DFT) calculations, a connection between coupling and PL kinetics of Mn2+ ions was established. Moreover, it is found that the Mn2+ ions residing on the surface of a nanostructure produce emissive states and interfere with the change of properties by Mn2+-Mn2+ coupling. In a configuration with suppressed surface contribution to the optical response, we show the underlying physical reasons for double and triple exponential decay by DFT methods. We believe that the presented doping strategy and simulation methodology of the Mn2+-doped ZnS (ZnS:Mn) system is a universal platform to study dopant location- and concentration-dependent properties also in other semiconductors.

17.
Phys Rev Lett ; 107(13): 137403, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-22026904

ABSTRACT

We demonstrate a direct correlation between the charge state and photoluminescence (PL) intensity of individual CdSe nanowires by actively charging them and performing electrostatic force microscopy and PL measurements simultaneously. While the injection of positive charges leads to an immediate PL quenching, a small amount of injected electrons can lead to an increase of the PL intensity. We directly observed the migration of excess charges into the substrate, which leads to a recovery of the PL. Further, we show that the PL of individual NWs can be actively switched between on and off states by charging with the atomic-force microscope tip. We propose a model based on charge trapping and migration into the substrate to explain our results.

18.
Nano Lett ; 10(10): 4166-74, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20825166

ABSTRACT

The optical properties of nanocrystals are drastically changed by the interaction with adjacent metal nanoparticles. By time-resolved photoluminescence spectroscopy, we investigate CdSe multishell nanocrystals coupled to self-assembled films of Au nanoparticles. The distance between emitter and metal is adjusted by coating the nanocrystals with silica shells. These NCs showed increased fluorescence intensity, a decreased fluorescence lifetime, strong blinking suppression, and fluorescence from gray states. These observations can be explained by the metal particle induced change of excitation and recombination rates.

19.
Nano Lett ; 10(2): 627-31, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20050673

ABSTRACT

We report on optical modes in rolled-up microtube resonators that are excited by PbS nanocrystals filled into the microtube core. Long ranging evanescent fields into the very thin walled microtubes cause strong emission of the nanocrystals into the resonator modes and a mode shift after a self-removal of the solvent. We present a method to precisely control the number, the energy and the localization of the modes along the microtube axis.


Subject(s)
Lead/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Semiconductors , Sulfides/chemistry , Equipment Design , Materials Testing , Optics and Photonics , Solvents/chemistry
20.
Nanoscale ; 13(17): 8017-8023, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33899075

ABSTRACT

Silver selenide (Ag2Se) is a promising material for applications as a solid-state electrolyte, with a superionic phase transition at 133 °C. Here, we studied the temperature dependent transport properties of single Ag2Se nanowires in a transistor geometry, which allowed us to determine charge carrier type, concentration, and mobility below and above the superionic phase transition temperature. We found the majority charge carriers to be n-type in the temperature range of 30-150 °C. Across the superionic phase-transition, we observed a sudden increase in conductivity by about 30%, which was accompanied by an increase in charge carrier density by about 200% and a decrease in mobility by about 45%. Interestingly, the size dependent shift of the transition temperatures to below 100 °C in our wires is much more pronounced than for nanocrystals of comparable size. This surprising and potentially useful effect could be caused by changes in crystal structure arising from the synthesis process.

SELECTION OF CITATIONS
SEARCH DETAIL