Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7753, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237553

ABSTRACT

Geothermal projects utilizing supercritical water (≥400 °C) could boost power output tenfold compared to conventional plants. However, these reservoirs commonly occur in crustal areas where rocks are semi-ductile or ductile, impeding large-scale fractures and cracking, and where hydraulic properties are largely unknown. Here, we explore the complex permeability of rocks under supercritical conditions using mechanical data from a gas-based triaxial apparatus, high-resolution synchrotron post-mortem 3D imagery, and finite element modeling. We report a first order control of strain partitioning on permeability. In the brittle regime, strain localizes on permeable faults without necessarily increasing sample apparent permeability. In the semi-ductile regime, distributed strain increases permeability both in deformation bands and the bulk, leading to a more than tenfold permeability increase. This study challenges the belief that the brittle-ductile transition (BDT) marks a cutoff for fluid circulation in the crust, demonstrating that permeability can develop in deforming semi-ductile rocks.

2.
Commun Earth Environ ; 5(1): 582, 2024.
Article in English | MEDLINE | ID: mdl-39398195

ABSTRACT

Recent large-scale seismological observations have shown that off-fault strain localization and foreshock migration could serve as an early warning of an impending earthquake. However, this process is still largely unknown. In this study, state-of-the-art friction experiments were conducted in a oil-confined biaxial shear apparatus to investigate the link between stick-slip nucleation and off-fault deformation. Our findings indicate that there is a direct link between stick-slip nucleation and off-fault deformation, provided that the fault is conditionally unstable (a - b < 0). Inelastic off-fault deformation may trigger unstable slip by decreasing the stiffness of the surrounding rock volume, which favors earthquake nucleation. Additionally, the study presents laboratory observation of precursory strain localization around a fault during stick-slip cycles. These findings suggest that volumetric deformation processes could be a main factor in the nucleation of large ruptures and strain localization could be a reliable harbinger of large earthquakes.

3.
J Geophys Res Solid Earth ; 127(6): e2022JB024600, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35864883

ABSTRACT

The permeability of volcanic rock controls the distribution of pore fluids and pore fluid pressure within a volcanic edifice, and is therefore considered to influence eruptive style and volcano deformation. We measured the porosity and permeability of a porous volcanic rock during deformation in the brittle and ductile regimes. In the brittle regime, permeability decreases by a factor of 2-6 up to the peak stress due the closure of narrow pore throats but, following shear fracture formation, remains approximately constant as strain is accommodated by sliding on the fracture. In the ductile regime, permeability continually decreases, by up to an order of magnitude, as a function of strain. Although compaction in the ductile regime is localized, permeability is not reduced substantially due to the tortuous and diffuse nature of the compaction bands, the geometry of which was also influenced by a pore shape preferred orientation. Although the evolution of the permeability of the studied porous volcanic rock in the brittle and ductile regimes is qualitatively similar to that for porous sedimentary rocks, the porosity sensitivity exponent of permeability in the elastic regime is higher than found previously for porous sedimentary rocks. This exponent decreases during shear-enhanced compaction toward a value theoretically derived for granular media, suggesting that the material is effectively granulating. Indeed, cataclastic pore collapse evolves the microstructure to one that is more granular. Understanding how permeability can evolve in a volcanic edifice will improve the accuracy of models designed to assist volcano monitoring and volcanic hazard mitigation.

SELECTION OF CITATIONS
SEARCH DETAIL