Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cell Biol Int ; 48(2): 162-173, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37818706

ABSTRACT

For cells to obtain inorganic phosphate, ectoenzymes in the plasma membrane, which contain a catalytic site facing the extracellular environment, hydrolyze phosphorylated molecules. In this study, we show that increased Pi levels in the extracellular environment promote a decrease in ecto-phosphatase activity, which is associated with Pi-induced oxidative stress. High levels of Pi inhibit ecto-phosphatase because Pi generates H2 O2 . Ecto-phosphatase activity is inhibited by H2 O2 , and this inhibition is selective for phospho-tyrosine hydrolysis. Additionally, it is shown that the mechanism of inhibition of ecto-phosphatase activity involves lipid peroxidation. In addition, the inhibition of ecto-phosphatase activity by H2 O2 is irreversible. These findings have new implications for understanding ecto-phosphatase regulation in the tumor microenvironment. H2 O2 stimulated by high Pi inhibits ecto-phosphatase activity to prevent excessive accumulation of extracellular Pi, functioning as a regulatory mechanism of Pi variations in the tumor microenvironment.


Subject(s)
Breast Neoplasms , Hydrogen Peroxide , Humans , Female , Hydrogen Peroxide/pharmacology , Phosphates/pharmacology , Phosphates/metabolism , Phosphoric Monoester Hydrolases , Hydrolysis , Tumor Microenvironment
2.
Cell Biol Int ; 45(2): 411-421, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33140880

ABSTRACT

Breast cancer is one of the most common cancers in the female population worldwide, and its development is thought to be associated with genetic mutations that lead to uncontrolled and accelerated growth of breast cells. This abnormal behavior requires extra energy, and indeed, tumor cells display a rewired energy metabolism compared to normal breast cells. Inorganic phosphate (Pi) is a glycolytic substrate of glyceraldehyde-3-phosphate dehydrogenase and has an important role in cancer cell proliferation. For cells to obtain Pi, ectoenzymes in the plasma membrane with their catalytic site facing the extracellular environment can hydrolyze phosphorylated molecules, and this is an initial and possibly limiting step for the uptake of Pi by carriers that behave as adjuvants in the process of energy harvesting and thus partially contributes to tumor energy requirements. In this study, the activity of an ectophosphatase in MDA-MB-231 cells was biochemically characterized, and the results showed that the activity of this enzyme was higher in the acidic pH range and that the enzyme had a Km = 4.5 ± 0.5 mM para-nitrophenylphosphate and a Vmax = 2280 ± 158 nM × h-1 × mg protein-1 . In addition, classical acid phosphatase inhibitors, including sodium orthovanadate, decreased enzymatic activity. Sodium orthovanadate was able to inhibit ectophosphatase activity while also inhibiting cell proliferation, adhesion, and migration, which are important processes in tumor progression, especially in metastatic breast cancer MDA-MB-231 cells that have higher ectophosphatase activity than MCF-7 and MCF-10 breast cells.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Phosphates/metabolism , Triple Negative Breast Neoplasms , Cell Adhesion , Cell Line, Tumor , Cell Proliferation , Female , Humans , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology
3.
PLoS Pathog ; 12(10): e1005947, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27788262

ABSTRACT

Chronic chagasic cardiomyopathy (CCC) develops years after acute infection by Trypanosoma cruzi and does not improve after trypanocidal therapy, despite reduction of parasite burden. During disease, the heart undergoes oxidative stress, a potential causative factor for arrhythmias and contractile dysfunction. Here we tested whether antioxidants/ cardioprotective drugs could improve cardiac function in established Chagas heart disease. We chose a model that resembles B1-B2 stage of human CCC, treated mice with resveratrol and performed electrocardiography and echocardiography studies. Resveratrol reduced the prolonged PR and QTc intervals, increased heart rates and reversed sinus arrhythmia, atrial and atrioventricular conduction disorders; restored a normal left ventricular ejection fraction, improved stroke volume and cardiac output. Resveratrol activated the AMPK-pathway and reduced both ROS production and heart parasite burden, without interfering with vascularization or myocarditis intensity. Resveratrol was even capable of improving heart function of infected mice when treatment was started late after infection, while trypanocidal drug benznidazole failed. We attempted to mimic resveratrol's actions using metformin (AMPK-activator) or tempol (SOD-mimetic). Metformin and tempol mimicked the beneficial effects of resveratrol on heart function and decreased lipid peroxidation, but did not alter parasite burden. These results indicate that AMPK activation and ROS neutralization are key strategies to induce tolerance to Chagas heart disease. Despite all tissue damage observed in established Chagas heart disease, we found that a physiological dysfunction can still be reversed by treatment with resveratrol, metformin and tempol, resulting in improved heart function and representing a starting point to develop innovative therapies in CCC.


Subject(s)
Antioxidants/pharmacology , Chagas Cardiomyopathy/pathology , Stilbenes/pharmacology , Animals , Cyclic N-Oxides/pharmacology , Disease Models, Animal , Female , Male , Metformin/pharmacology , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Resveratrol , Spin Labels
4.
Biochim Biophys Acta ; 1840(7): 2123-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24674820

ABSTRACT

BACKGROUND: Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. SCOPE OF REVIEW: Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. MAJOR CONCLUSION: Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. GENERAL SIGNIFICANCE: Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field.


Subject(s)
Eukaryotic Cells/metabolism , Homeostasis/genetics , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Cell Membrane/metabolism , Leishmania infantum/metabolism , Phosphate Transport Proteins/genetics , Plasmodium falciparum/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction/genetics , Trypanosoma cruzi/metabolism
5.
Parasitol Res ; 113(8): 2961-72, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24906990

ABSTRACT

Trypanosoma cruzi virulence factors include molecules expressed on the cell surface as well as those secreted or shed into the extracellular medium. Phosphatase activities modulate different aspects of T. cruzi infection, although no studies to date addressed the presence and activity of phosphatases in vesicles secreted by this parasite. Here, we characterized acidic and alkaline secreted phosphatase activities of human-infective trypomastigote forms of T. cruzi from the Y strain and the CL-Brener clone. These are widely studied T. cruzi strains that represent "opposite ends of the spectrum" regarding both in vitro and in vivo behavior. Ecto-phosphatase activities were determined in live parasites, and secreted phosphatase activities were analyzed in soluble protein (SP) and vesicular membrane fractions (VFs) of parasite-conditioned medium. Our analysis using different phosphatase inhibitors strongly suggests that vesicles secreted by Y strain (VF(Y)) and CL-Brener (VF(CLB)) trypomastigotes are derived mostly from the cell surface and from exosome secretion, respectively. Importantly, our results show that the acid phosphatase activities in vesicles secreted by trypomastigotes are largely responsible for the VF-induced increase in adhesion of Y strain parasites to host cells and also for the VF-induced increase in host cell infection by CL-Brener trypomastigotes.


Subject(s)
Acid Phosphatase/metabolism , Alkaline Phosphatase/metabolism , Secretory Vesicles/enzymology , Trypanosoma cruzi/pathogenicity , Virulence Factors/metabolism , Animals , Cell Membrane/metabolism , Cells, Cultured , Macrophages/parasitology , Mice , Secretory Vesicles/ultrastructure , Trypanosoma cruzi/enzymology
6.
Eur J Immunol ; 42(5): 1203-15, 2012 May.
Article in English | MEDLINE | ID: mdl-22311598

ABSTRACT

Dendritic cells (DCs) play an essential role in the modulation of immune responses and several studies have evaluated the interactions between Leishmania parasites and DCs. While extracellular ATP exhibits proinflammatory properties, adenosine is an important anti-inflammatory mediator. Here we investigated the effects of Leishmania infection on DC responses and the participation of purinergic signalling in this process. Bone marrow-derived dendritic cells (BMDCs) from C57BL/6J mice infected with Leishmania amazonensis, Leishmania braziliensis or Leishmania major metacyclic promastigotes showed decreased major histocompatibility complex (MHC) class II and CD86 expression and increased ectonucleotidase expression as compared with uninfected cells. In addition, L. amazonensis-infected DCs, which had lower CD40 expression, exhibited a decreased ability to induce T-cell proliferation. The presence of MRS1754, a highly selective A(2B) adenosine receptor antagonist at the time of infection increased MHC class II, CD86 and CD40 expression in L. amazonensis-infected DCs and restored the ability of the infected DCs to induce T-cell proliferation. Similar results were obtained through the inhibition of extracellular ATP hydrolysis using suramin. In conclusion, we propose that A(2B) receptor activation may be used by L. amazonensis to inhibit DC function and evade the immune response.


Subject(s)
CD40 Antigens/immunology , Dendritic Cells/immunology , Leishmania/immunology , Leishmaniasis/immunology , Receptor, Adenosine A2B/immunology , Acetamides/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Animals , B7-2 Antigen/biosynthesis , B7-2 Antigen/immunology , Bone Marrow Cells/immunology , CD40 Antigens/biosynthesis , Cells, Cultured , Histocompatibility Antigens Class II/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Nucleotidases/biosynthesis , Purines/pharmacology , Suramin/pharmacology , T-Lymphocytes/immunology , Trypanocidal Agents/pharmacology
7.
Arch Insect Biochem Physiol ; 82(3): 129-40, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23361613

ABSTRACT

Lipophorin is a major lipoprotein that transports lipids in insects. In Rhodnius prolixus, it transports lipids from midgut and fat body to the oocytes. Analysis by thin-layer chromatography and densitometry identified the major lipid classes present in the lipoprotein as diacylglycerol, hydrocarbons, cholesterol, and phospholipids (PLs), mainly phosphatidylethanolamine and phosphatidylcholine. The effect of preincubation at elevated temperatures on lipophorin capacity to deliver or receive lipids was studied. Transfer of PLs to the ovaries was only inhibited after preincubation of lipophorin at temperatures higher than 55 °C. When it was pretreated at 75 °C, maximal inhibition of phospholipid transfer was observed after 3-min heating and no difference was observed after longer times, up to 60 min. The same activity was also obtained when lipophorin was heated for 20 min at 75 °C at protein concentrations from 0.2 to 10 mg/ml. After preincubation at 55 °C, the same rate of lipophorin loading with PLs at the fat body was still present, and 30% of the activity was observed at 75 °C. The effect of temperature on lipophorin was also analyzed by turbidity and intrinsic fluorescence determinations. Turbidity of a lipophorin solution started to increase after preincubations at temperatures higher than 65 °C. Emission fluorescence spectra were obtained for lipophorin, and the spectral area decreased after preincubations at 85 °C or above. These data indicated no difference in the spectral center of mass at any tested temperature. Altogether, these results demonstrate that lipophorin from R. prolixus is very resistant to high temperatures.


Subject(s)
Lipoproteins/chemistry , Rhodnius/chemistry , Animals , Fat Body/metabolism , Female , Hot Temperature , Lipid Metabolism , Lipoproteins/metabolism , Ovary/metabolism , Rhodnius/metabolism
8.
Exp Parasitol ; 135(2): 459-65, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23994113

ABSTRACT

The aim of this work was to investigate whether an alkaline ecto-phosphatase activity is present in the surface of Trypanosoma rangeli. Intact short epimastigote forms were assayed for ecto-phosphatase activity to study kinetics and modulators using ß-glycerophosphate (ß-GP) and p-nitrophenyl phosphate (pNPP) as substrates. Its role in parasite development and differentiation was also studied. Competition assays using different proportions of ß-GP and pNPP evidenced the existence of independent and non-interacting alkaline and acid phosphatases. Hydrolysis of ß-GP increased progressively with pH, whereas the opposite was evident using pNPP. The alkaline enzyme was inhibited by levamisole in a non-competitive fashion. The Ca(2+) present in the reaction medium was enough for full activity. Pretreatment with PI-PLC decreased the alkaline but not the acid phosphatase evidence that the former is catalyzed by a GPI-anchored enzyme, with potential intracellular signaling ability. ß-GP supported the growth and differentiation of T. rangeli to the same extent as high orthophosphate (Pi). Levamisole at the IC50 spared significantly parasite growth when ß-GP was the sole source of Pi and stopped it in the absence of ß-GP, indicating that the alkaline enzyme can utilize phosphate monoesters present in serum. These results demonstrate the existence of an alkaline ecto-phosphatase in T. rangeli with selective requirements and sensitivity to inhibitors that participates in key metabolic processes in the parasite life cycle.


Subject(s)
Alkaline Phosphatase/metabolism , Trypanosoma rangeli/enzymology , Trypanosoma rangeli/growth & development , Acid Phosphatase/antagonists & inhibitors , Acid Phosphatase/metabolism , Catalysis , Cations, Divalent/pharmacology , Glycerophosphates/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Levamisole/pharmacology , Nitrophenols/metabolism , Organophosphorus Compounds/metabolism , Substrate Specificity
9.
Antioxidants (Basel) ; 12(5)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37237850

ABSTRACT

(1) Background: Ionic transport in Trypanosoma cruzi is the object of intense studies. T. cruzi expresses a Fe-reductase (TcFR) and a Fe transporter (TcIT). We investigated the effect of Fe depletion and Fe supplementation on different structures and functions of T. cruzi epimastigotes in culture. (2) Methods: We investigated growth and metacyclogenesis, variations of intracellular Fe, endocytosis of transferrin, hemoglobin, and albumin by cell cytometry, structural changes of organelles by transmission electron microscopy, O2 consumption by oximetry, mitochondrial membrane potential measuring JC-1 fluorescence at different wavelengths, intracellular ATP by bioluminescence, succinate-cytochrome c oxidoreductase following reduction of ferricytochrome c, production of H2O2 following oxidation of the Amplex® red probe, superoxide dismutase (SOD) activity following the reduction of nitroblue tetrazolium, expression of SOD, elements of the protein kinase A (PKA) signaling, TcFR and TcIT by quantitative PCR, PKA activity by luminescence, glyceraldehyde-3-phosphate dehydrogenase abundance and activity by Western blotting and NAD+ reduction, and glucokinase activity recording NADP+ reduction. (3) Results: Fe depletion increased oxidative stress, inhibited mitochondrial function and ATP formation, increased lipid accumulation in the reservosomes, and inhibited differentiation toward trypomastigotes, with the simultaneous metabolic shift from respiration to glycolysis. (4) Conclusion: The processes modulated for ionic Fe provide energy for the T. cruzi life cycle and the propagation of Chagas disease.

10.
Front Physiol ; 14: 1142433, 2023.
Article in English | MEDLINE | ID: mdl-36923285

ABSTRACT

Yolk biogenesis and consumption have been well conserved in oviparous animals throughout evolution. Most egg-laying animals store yolk proteins within the oocytes' yolk granules (Ygs). Following fertilization, the Ygs participate in controlled pathways of yolk breakdown to support the developing embryo's anabolic metabolism. While the unfolding of the yolk degradation program is a crucial process for successful development in many species, the molecular mechanisms responsible for yolk mobilization are still mysterious and have mostly not been explored. Here, we investigate the functional role of the oocyte maternally accumulated mRNAs of a protein phosphatase (PP501) and two aspartic proteases (cathepsin-D 405, CD405 and cathepsin-D 352, CD352) in the yolk degradation and reproduction of the insect vector of Chagas disease Rhodnius prolixus. We found that PP501 and CD352 are highly expressed in the vitellogenic ovary when compared to the other organs of the adult insect. Parental RNAi silencing of PP501 resulted in a drastic reduction in oviposition and increased embryo lethality whereas the silencing of CD352 resulted only in a slight decrease in oviposition and embryo viability. To further investigate the PP501-caused high reproduction impairment, we investigated the Ygs biogenesis during oocyte maturation and the activation of the yolk degradation program at early development. We found that the Ygs biogenesis was deficient during oogenesis, as seen by flow cytometry, and that, although the PP501-silenced unviable eggs were fertilized, the Ygs acidification and acid phosphatase activity were affected, culminating in a full impairment of the yolk proteins degradation at early embryogenesis. Altogether we found that PP501 is required for the oocyte maturation and the activation of the yolk degradation, being, therefore, essential for this vector reproduction.

11.
Med Mycol ; 50(6): 570-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22320857

ABSTRACT

Rhinocladiella aquaspersa is an etiologic agent of chromoblastomycosis, a subcutaneous chronic infectious disease. In the present work, we found that the three morphological forms of this fungus (conidia, mycelia and sclerotic bodies) expressed different levels of ecto-phosphatase activity. Our results demonstrated that surface conidial enzyme is an acid phosphatase, inhibited by sodium salts of molybdate, orthovanadate and fluoride and that the inhibition caused by orthovanadate and molybdate was irreversible. The conidial ecto-phosphatase efficiently released phosphate groups from different phosphorylated substrates, causing a higher rate of phosphate removal when p-nitrophenylphosphate was used as substrate. This ecto-enzyme of R. aquaspersa is modulated by Co(2 +) ions and inorganic phosphate (Pi). Accordingly, removal of Pi from the culture medium resulted in a marked (121-fold) increase of ecto-phosphatase activity. Surface phosphatase activity is apparently involved in fungal adhesive properties, since the attachment of R. aquaspersa to epithelial cells was reversed by the pre-treatment of the conidia with orthovanadate, molybdate and anti-phosphatase antibody. Corroborating this finding, conidia with greater ecto-phosphatase activity (grown in Pi-depleted medium) showed higher adherence to epithelial cells than fungi cultivated in the presence of Pi.


Subject(s)
Acid Phosphatase/metabolism , Ascomycota/enzymology , Fruiting Bodies, Fungal/enzymology , Mycelium/enzymology , Spores, Fungal/enzymology , Acid Phosphatase/antagonists & inhibitors , Animals , Antibodies/pharmacology , Ascomycota/drug effects , Ascomycota/isolation & purification , CHO Cells , Cell Adhesion , Chromoblastomycosis/microbiology , Cricetinae , Culture Media/chemistry , Enzyme Activation , Enzyme Assays , Enzyme Inhibitors/pharmacology , Fruiting Bodies, Fungal/drug effects , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Humans , Molybdenum/pharmacology , Mycelium/drug effects , Phosphates/pharmacology , Spores, Fungal/drug effects , Time Factors , Vanadates/pharmacology
12.
Arch Insect Biochem Physiol ; 81(4): 199-213, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22851503

ABSTRACT

Trehalose represents the main hemolymph sugar in most insects and its metabolic availability is regulated by trehalase. In this study, trehalase activity associated with the reproductive system was investigated in the insect Rhodnius prolixus, a hematophagous hemipteran vector of Chagas' disease. A single-copy gene that encodes a membrane-bound trehalase (RpTre-2) was identified in the genome of R. prolixus. RpTre-2 deduced amino acid sequence is closely related to other insect membrane-bound trehalases. The expression of this gene was detected in all analyzed organs, including ovary, where total trehalase enzymatic activity was determined, and was highest at day 7 after blood meal. Ovary membranes showed a major trehalase specific activity, which confirmed the presence of a membrane-bound trehalase in this insect. This trehalase activity seemed not to be regulated at transcriptional level, as the expression of RpTre-2 gene in the ovary did not change over the days after feeding. Similarly, ovarian follicles at different developmental stages did not show any variation in the transcription level of this gene. The RpTre-2 kinetic parameters were also investigated. Activity was highest at pH 5.5 and followed Michaelis-Menten kinetics, with an apparent K(m) = 1.42 ± 0.36 mM and Vmax = 167.90 ± 12.91 nmol/mg protein/h. These data reveal the presence of a membrane-bound trehalase in R. prolixus that is active in ovary and probably takes part in the insect carbohydrate metabolism associated with the reproductive process.


Subject(s)
Insect Proteins/metabolism , Ovary/enzymology , Rhodnius/enzymology , Trehalase/metabolism , Amino Acid Sequence , Animals , Base Sequence , Female , Gene Expression , Insect Proteins/genetics , Molecular Sequence Data , Rhodnius/genetics , Trehalase/genetics
13.
Pathogens ; 11(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36015018

ABSTRACT

Trypanosoma cruzi, the causative agent of Chagas disease, faces changes in redox status and nutritional availability during its life cycle. However, the influence of oxygen fluctuation upon the biology of T. cruzi is unclear. The present work investigated the response of T. cruzi epimastigotes to hypoxia. The parasites showed an adaptation to the hypoxic condition, presenting an increase in proliferation and a reduction in metacyclogenesis. Additionally, parasites cultured in hypoxia produced more reactive oxygen species (ROS) compared to parasites cultured in normoxia. The analyses of the mitochondrial physiology demonstrated that hypoxic condition induced a decrease in both oxidative phosphorylation and mitochondrial membrane potential (ΔΨm) in epimastigotes. In spite of that, ATP levels of parasites cultivated in hypoxia increased. The hypoxic condition also increased the expression of the hexokinase and NADH fumarate reductase genes and reduced NAD(P)H, suggesting that this increase in ATP levels of hypoxia-challenged parasites was a consequence of increased glycolysis and fermentation pathways. Taken together, our results suggest that decreased oxygen levels trigger a shift in the bioenergetic metabolism of T. cruzi epimastigotes, favoring ROS production and fermentation to sustain ATP production, allowing the parasite to survive and proliferate in the insect vector.

14.
Mem Inst Oswaldo Cruz ; 106(1): 23-31, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21340351

ABSTRACT

Leishmania amazonensis causes different diseases depending on the host and parasitic virulence factors. In this study, CBA mice were infected with L. amazonensis isolates from patients with localized (Ba125), diffuse cutaneous (Ba276) or visceral leishmaniasis (Ba109). Mice infected with Ba125 and Ba276 progressed rapidly and lesions displayed an infiltrate rich in parasitized macrophages and were necrotic and ulcerated. Ba109 induced smaller lesions and a mixed inflammatory infiltrate without necrosis or ulceration. Ba109 induced an insidious disease with lower parasite load in CBA mice, similar to human disease. Levels of IFN-γ, IL-4 and IL-10 did not differ among the groups. Because all groups were unable to control the infection, expression of IL-4 associated with low production of IFN-γ in the early phase of infection may account for susceptibility, but others factors may contribute to the differences observed in inflammatory responses and infection progression. Evaluation of some parasitic virulence factors revealed that Ba276 exhibits higher ecto-ADPase and 5'-nucleotidase activities compared to the Ba109 and Ba125 strains. Both Ba276 and Ba125 had higher arginase activity in comparison to Ba109. Finally, these data suggest that the differences in enzyme activities among parasites can account for differences in host inflammatory responses and infection progression.


Subject(s)
Inflammation/immunology , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Interleukin-4/biosynthesis , Leishmania mexicana/pathogenicity , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Visceral/immunology , Animals , Bone Marrow/parasitology , Disease Progression , Humans , Leishmania mexicana/enzymology , Leishmania mexicana/immunology , Leishmaniasis, Cutaneous/pathology , Leishmaniasis, Visceral/pathology , Liver/parasitology , Mice , Mice, Inbred CBA , Spleen/parasitology , Virulence Factors/immunology
15.
Front Cell Infect Microbiol ; 11: 789401, 2021.
Article in English | MEDLINE | ID: mdl-35083166

ABSTRACT

The parasite Trypanosoma cruzi causes Chagas' disease; both heme and ionic Fe are required for its optimal growth, differentiation, and invasion. Fe is an essential cofactor in many metabolic pathways. Fe is also harmful due to catalyzing the formation of reactive O2 species; for this reason, all living systems develop mechanisms to control the uptake, metabolism, and storage of Fe. However, there is limited information available on Fe uptake by T. cruzi. Here, we identified a putative 39-kDa Fe transporter in T. cruzi genome, TcIT, homologous to the Fe transporter in Leishmania amazonensis and Arabidopsis thaliana. Epimastigotes grown in Fe-depleted medium have increased TcIT transcription compared with controls grown in regular medium. Intracellular Fe concentration in cells maintained in Fe-depleted medium is lower than in controls, and there is a lower O2 consumption. Epimastigotes overexpressing TcIT, which was encountered in the parasite plasma membrane, have high intracellular Fe content, high O2 consumption-especially in phosphorylating conditions, high intracellular ATP, very high H2O2 production, and stimulated transition to trypomastigotes. The investigation of the mechanisms of Fe transport at the cellular and molecular levels will assist in elucidating Fe metabolism in T. cruzi and the involvement of its transport in the differentiation from epimastigotes to trypomastigotes, virulence, and maintenance/progression of the infection.


Subject(s)
Trypanosoma cruzi , Energy Metabolism , Homeostasis , Hydrogen Peroxide , Iron , Oxidative Stress
16.
Article in English | MEDLINE | ID: mdl-32117812

ABSTRACT

In the protozoan pathogen Leishmania, endocytosis, and exocytosis occur mainly in the small area of the flagellar pocket membrane, which makes this parasite an interesting model of strikingly polarized internalization and secretion. Moreover, little is known about vesicle recognition and fusion mechanisms, which are essential for both endo/exocytosis in this parasite. In other cell types, vesicle fusion events require the activity of phospholipase A2 (PLA2), including Ca2+-independent iPLA2 and soluble, Ca2+-dependent sPLA2. Here, we studied the role of bromoenol lactone (BEL) inhibition of endo/exocytosis in promastigotes of Leishmania amazonensis. PLA2 activities were assayed in intact parasites, in whole conditioned media, and in soluble and extracellular vesicles (EVs) conditioned media fractions. BEL did not affect the viability of promastigotes, but reduced the differentiation into metacyclic forms. Intact parasites and EVs had BEL-sensitive iPLA2 activity. BEL treatment reduced total EVs secretion, as evidenced by reduced total protein concentration, as well as its size distribution and vesicles in the flagellar pocket of treated parasites as observed by TEM. Membrane proteins, such as acid phosphatases and GP63, became concentrated in the cytoplasm, mainly in multivesicular tubules of the endocytic pathway. BEL also prevented the endocytosis of BSA, transferrin and ConA, with the accumulation of these markers in the flagellar pocket. These results suggested that the activity inhibited by BEL, which is one of the irreversible inhibitors of iPLA2, is required for both endocytosis and exocytosis in promastigotes of L. amazonensis.


Subject(s)
Leishmania , Pyrones , Endocytosis , Exocytosis , Naphthalenes
17.
Arch Insect Biochem Physiol ; 72(1): 1-15, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19514081

ABSTRACT

The vector of Chagas' disease, Rhodnius prolixus, feeds exclusively on blood. The blood meals are slowly digested, and these insects wait some weeks before the next meal. During the life of an insect, energy-requiring processes such as moulting, adult gonadal and reproductive growth, vitellogenesis, muscular activity, and fasting, lead to increased metabolism. Carbohydrates are a major source of energy and their mobilization is important. We determined the amounts of glycogen, trehalose, and glucose present in the fat body and/or hemolymph of adult males of R. prolixus and recorded the processes of accumulation and mobilization of these carbohydrates. We also tested our hypothesis that these processes are under endocrine control. The amount of glycogen in the fat body progressively increased until the fourth day after feeding (from 9.3+/-2.2 to 77. 3+/-7.5 microg/fat body), then declined to values around 36.3+/-4.9 microg/fat body on the fifteenth day after the blood meal. Glycogen synthesis was eliminated in decapitated insects and head-transplanted insects synthesized glycogen. The amount of trehalose in the fat body increased until the sixth day after feeding (from 16. 6+/-1.7 to 40. 6+/-5.3 nmol/fat body), decreased abruptly, and stabilized between days 7 and 15 at values ranging around 15-19 nmol/fat body. Decapitated insects did not synthesize trehalose after feeding, and this effect was reversed in head-transplanted insects. The concentration of trehalose in the hemolymph increased after the blood meal until the third day (from 0.07+/-0.01 to 0.75+/-0.05 mM) and at the fourth day it decreased until the ninth day (0.21+/-0.01 mM), when it increased again until the fourteenth day (0.79+/-0.06 mM) after the blood meal, and then declined again. In decapitated insects, trehalose concentrations did not increase soon after the blood meal and at the third day it was very low, but on the fourteenth day it was close to the control values. The concentration of glucose in the hemolymph of untreated insects remained low and constant (0.18+/-0.01 mM) during the 15 days after feeding, but in decapitated insects it progressively increased until the fifteenth day (2.00+/-0.10 mM). We recorded the highest trehalase activity in midgut, which was maximal at the eighth day after feeding (2,830+/-320 nmol of glucose/organ/h). We infer that in Rhodnius prolixus, the metabolism of glycogen, glucose, and trehalose are controlled by factors from the brain, according to physiological demands at different days after the blood meal.


Subject(s)
Glycogen/metabolism , Rhodnius/metabolism , Trehalose/metabolism , Animals , Fat Body/metabolism , Glycogen/biosynthesis , Hemolymph/metabolism , Histocytochemistry , Male , Trehalose/biosynthesis
18.
Exp Parasitol ; 121(1): 15-21, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18845148

ABSTRACT

Ecto-phosphatase activities of Giardia lamblia were characterized in intact cells, which are able to hydrolyze the artificial substrate p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 8.4+/-0.8 nmol p-NP/h/10(7) cells. The ecto-phosphatase activities were inhibited at high pH as well as by classical inhibitors of acid phosphatases, such as sodium fluoride and sodium molybdate and by inorganic phosphate, the final product of the reaction. Experiments using a classical inhibitor of phosphotyrosine phosphatase, sodium orthovanadate, also showed that the ecto-phosphatase activity was inhibited in a dose-dependent manner. Different phosphorylated amino acids were used as substrates for the G. lamblia ecto-phosphatase activities the highest rate of phosphate release was achieved using phosphotyrosine. Not only p-NPP hydrolysis but also phosphotyrosine hydrolysis was inhibited by sodium orthovanadate. Phosphotyrosine but not phospho-serine or phospho-threonine inhibited the p-nitrophenylphosphatase activity. We also observed a positive correlation between the ecto-phosphatase activity and the capacity to encystation of G. lamblia trophozoites.


Subject(s)
Giardia lamblia/enzymology , Phosphoric Monoester Hydrolases/metabolism , Animals , Enzyme Inhibitors/pharmacology , Giardia lamblia/physiology , Hydrogen-Ion Concentration , Molybdenum/pharmacology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Sodium Fluoride/pharmacology , Substrate Specificity , Vanadates/pharmacology
19.
Acta Trop ; 106(2): 137-42, 2008 May.
Article in English | MEDLINE | ID: mdl-18407240

ABSTRACT

The salivary glands of insect's vectors are target organs to study the vectors-pathogens interactions. Rhodnius prolixus an important vector of Trypanosoma cruzi can also transmit Trypanosoma rangeli by bite. In the present study we have investigated ecto-phosphatase activity on the surface of R. prolixus salivary glands. Ecto-phosphatases are able to hydrolyze phosphorylated substrates in the extracellular medium. We characterized these ecto-enzyme activities on the salivary glands external surface and employed it to investigate R. prolixus-T. rangeli interaction. Salivary glands present a low level of hydrolytic activity (4.30+/-0.35 nmol p-nitrophenol (p-NP)xh(-1)xgland pair(-1)). The salivary glands ecto-phosphatase activity was not affected by pH variation; and it was insensitive to alkaline inhibitor levamisole and inhibited approximately 50% by inorganic phosphate (Pi). MgCl2, CaCl2 and SrCl2 enhanced significantly the ecto-phosphatase activity detected on the surface of salivary glands. The ecto-phosphatase from salivary glands surface efficiently releases phosphate groups from different phosphorylated amino acids, giving a higher rate of phosphate release when phospho-tyrosine is used as a substrate. This ecto-phosphatase activity was inhibited by carbohydrates as d-galactose and d-mannose. Living short epimastigotes of T. rangeli inhibited salivary glands ecto-phosphatase activity at 75%, while boiled parasites did not. Living long epimastigote forms induced a lower, but significant inhibitory effect on the salivary glands phosphatase activity. Interestingly, boiled long epimastigote forms did not loose the ability to modulate salivary glands phosphatase activity. Taken together, these data suggest a possible role for ecto-phosphatase on the R. prolixus salivary glands-T. rangeli interaction.


Subject(s)
Carbohydrates/pharmacology , Down-Regulation , Enzyme Inhibitors/pharmacology , Phosphoric Monoester Hydrolases/metabolism , Rhodnius/enzymology , Salivary Glands/enzymology , Trypanosoma/physiology , Animals , Calcium Chloride/pharmacology , Enzyme Activators/pharmacology , Host-Parasite Interactions , Hydrogen-Ion Concentration , Levamisole/pharmacology , Magnesium Chloride/pharmacology , Male , Nitrophenols/metabolism , Strontium/pharmacology
20.
Vascul Pharmacol ; 82: 66-72, 2016 07.
Article in English | MEDLINE | ID: mdl-26924460

ABSTRACT

Schistosomiasis is caused by an intravascular parasite and linked to phenotypic changes in endothelial cells that favor inflammation. Endothelial cells express P2Y1 receptors (P2Y1R), and their activation by ADP favors leukocyte adhesion to the endothelial monolayer. We aimed to evaluate the influence of schistosomiasis upon endothelial purinergic signaling-mediated leukocyte adhesion. Mesenteric endothelial cells and mononuclear cells from control and Schistosoma mansoni-infected mice were used in co-culture. P2Y1R levels were similar in both groups. Basal leukocyte adhesion was higher in the infected than in the control group; leukocyte adhesion increased after treatment with the P2Y1R agonist 2-MeSATP in both groups, though it only marginally increased in the infected group. Pre-incubation with the selective P2Y1R antagonist MRS2179 (0.3µM) prevented the agonist effect. However, in the infected group it also reduced the basal leukocyte adhesion, suggesting endothelial cell pre-activation. The endothelial expressions of NTPDases 2 and 3 were significantly increased in the infected group, increasing extracellular ATP hydrolysis and ADP formation by endothelial cells. Therefore, mesenteric endothelial cells are primed by schistosomiasis to a pro-inflammatory phenotype characterized by an increased expression of NTPDases 2 and 3, favoring ADP accumulation and mononuclear cell adhesion, possibly contributing to mesenteric inflammation and schistosomiasis morbidity.


Subject(s)
Adenosine Triphosphatases/metabolism , Cell Adhesion , Endothelial Cells/enzymology , Leukocytes/metabolism , Mesentery/blood supply , Receptors, Purinergic P2Y1/metabolism , Schistosoma mansoni/pathogenicity , Schistosomiasis/enzymology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/parasitology , Host-Pathogen Interactions , Humans , Hydrolysis , Leukocytes/drug effects , Leukocytes/parasitology , Male , Mice , Phenotype , Purinergic P2Y Receptor Agonists/pharmacology , Receptors, Purinergic P2Y1/drug effects , Schistosomiasis/parasitology , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL