ABSTRACT
CoverageMaster (CoM) is a copy number variation (CNV) calling algorithm based on depth-of-coverage maps designed to detect CNVs of any size in exome [whole exome sequencing (WES)] and genome [whole genome sequencing (WGS)] data. The core of the algorithm is the compression of sequencing coverage data in a multiscale Wavelet space and the analysis through an iterative Hidden Markov Model. CoM processes WES and WGS data at nucleotide scale resolution and accurately detects and visualizes full size range CNVs, including single or partial exon deletions and duplications. The results obtained with this approach support the possibility for coverage-based CNV callers to replace probe-based methods such as array comparative genomic hybridization and multiplex ligation-dependent probe amplification in the near future.
Subject(s)
DNA Copy Number Variations , Exome , Comparative Genomic Hybridization/methods , High-Throughput Nucleotide Sequencing/methods , Exome Sequencing , Whole Genome SequencingABSTRACT
Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germ-line mosaicism in one of the parents; the mosaicism, however, could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant that is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism-related gene. Our results show that PAK2-induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.
Subject(s)
Retinal Degeneration , Retinal Detachment , Encephalocele/diagnosis , Encephalocele/genetics , Encephalocele/pathology , HEK293 Cells , Humans , Mutation , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Detachment/congenital , Retinal Detachment/genetics , p21-Activated Kinases/geneticsABSTRACT
PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes. METHODS: We evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues. RESULTS: Among the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism-two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature. CONCLUSIONS: We identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling.
Subject(s)
Hypogonadism , Infertility , Genetic Counseling , Humans , Hypogonadism/genetics , Mosaicism , Exome SequencingABSTRACT
The circadian clock in peripheral tissues can be entrained by restricted feeding (RF), a regimen that restricts the duration of food availability with no calorie restriction (CR). However, it is not known whether RF can delay the occurrence of age-associated changes similar to CR. We measured circadian expression of clock genes, disease marker genes, metabolic factors and inflammatory and allergy markers in mouse serum, liver, jejunum and white adipose tissue (WAT) after long-term RF of 4 months. We found that circadian rhythmicity is more robust and is phase advanced in most of the genes and proteins tested under RF. In addition, average daily levels of some disease and inflammatory markers were reduced under RF, including liver Il-6 mRNA, tumour necrosis factor (TNF)-α and nuclear factor κB (NF-κB) protein; jejunum Arginase, Afp, Gadd45ß, Il-1α and Il-1ß mRNA, and interleukin (IL)-6 and TNF-α protein and WAT Il-6, Il-1ß, Tnfα and Nfκb mRNA. In contrast, the anti-inflammatory cytokine Il-10 mRNA increased in the liver and jejunum. Our results suggest that RF may share some benefits with those of CR. As RF is a less harsh regimen to follow than CR, the data suggest it could be proposed for individuals seeking to improve their health.
Subject(s)
Biomarkers/metabolism , Caloric Restriction , Circadian Rhythm/physiology , Heart/physiology , Inflammation/metabolism , Neoplasms/metabolism , Animals , Blotting, Western , Body Weight , Cytokines/genetics , Cytokines/metabolism , Inflammation/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Motor Activity , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Thrombosis/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolismABSTRACT
OBJECTIVE: Congenital hypogonadotropic hypogonadism (CHH) and constitutional delay of growth and puberty (CDGP) represent rare and common forms of GnRH deficiency, respectively. Both CDGP and CHH present with delayed puberty, and the distinction between these two entities during early adolescence is challenging. More than 30 genes have been implicated in CHH, while the genetic basis of CDGP is poorly understood. DESIGN: We characterized and compared the genetic architectures of CHH and CDGP, to test the hypothesis of a shared genetic basis between these disorders. METHODS: Exome sequencing data were used to identify rare variants in known genes in CHH (n = 116), CDGP (n = 72) and control cohorts (n = 36 874 ExAC and n = 405 CoLaus). RESULTS: Mutations in at least one CHH gene were found in 51% of CHH probands, which is significantly higher than in CDGP (7%, P = 7.6 × 10-11) or controls (18%, P = 5.5 × 10-12). Similarly, oligogenicity (defined as mutations in more than one gene) was common in CHH patients (15%) relative to CDGP (1.4%, P = 0.002) and controls (2%, P = 6.4 × 10-7). CONCLUSIONS: Our data suggest that CDGP and CHH have distinct genetic profiles, and this finding may facilitate the differential diagnosis in patients presenting with delayed puberty.
Subject(s)
Growth Disorders/diagnosis , Growth Disorders/genetics , Hypogonadism/diagnosis , Hypogonadism/genetics , Puberty, Delayed/diagnosis , Puberty, Delayed/genetics , Adult , Aged , Cohort Studies , Female , Finland/epidemiology , Growth Disorders/epidemiology , Humans , Hypogonadism/epidemiology , Male , Middle Aged , Mutation/genetics , Puberty, Delayed/epidemiologyABSTRACT
Cinnamon extract is associated to different health benefits but the active ingredients or pathways are unknown. Cinnamaldehyde (CIN) imparts the characteristic flavor to cinnamon and is known to be the main agonist of transient receptor potential-ankyrin receptor 1 (TRPA1). Here, expression of TRPA1 in epithelial mouse stomach cells is described. After receiving a single-dose of CIN, mice significantly reduce cumulative food intake and gastric emptying rates. Co-localization of TRPA1 and ghrelin in enteroendocrine cells of the duodenum is observed both in vivo and in the MGN3-1 cell line, a ghrelin secreting cell model, where incubation with CIN up-regulates expression of TRPA1 and Insulin receptor genes. Ghrelin secreted in the culture medium was quantified following CIN stimulation and we observe that octanoyl and total ghrelin are significantly lower than in control conditions. Additionally, obese mice fed for five weeks with CIN-containing diet significantly reduce their cumulative body weight gain and improve glucose tolerance without detectable modification of insulin secretion. Finally, in adipose tissue up-regulation of genes related to fatty acid oxidation was observed. Taken together, the results confirm anti-hyperglycemic and anti-obesity effects of CIN opening a new approach to investigate how certain spice derived compounds regulate endogenous ghrelin release for therapeutic intervention.
Subject(s)
Acrolein/analogs & derivatives , Anti-Obesity Agents/pharmacology , Eating/drug effects , Gastric Emptying/drug effects , Ghrelin/metabolism , Hypoglycemic Agents/pharmacology , Acrolein/pharmacology , Animals , Cell Line , Eating/genetics , Epithelial Cells/metabolism , Gastric Emptying/genetics , Gastric Mucosa/metabolism , Gene Expression Regulation/drug effects , Ghrelin/genetics , Mice , Mice, Knockout , Mice, Obese , TRPA1 Cation Channel , Transient Receptor Potential Channels/biosynthesis , Transient Receptor Potential Channels/geneticsABSTRACT
Restricted feeding (RF), a regimen that restricts the duration of food availability with no calorie restriction, entrains the circadian clock in peripheral tissues. Restricted feeding leads to high-amplitude circadian rhythms, which have been shown to promote wellness and reduce disease and inflammatory markers. Retinoids, such as all-trans retinoic acid (ATRA), act as anti-inflammatory agents. Thus far, the effect of ATRA combined with RF on the ability to delay the occurrence of age-associated changes, such as cancer and inflammation, is not known. We measured circadian expression of clock genes, disease marker genes and inflammatory markers in the serum, liver and jejunum in mice fed ad libitum (AL) or RF supplemented with 15 or 250 µg/kg body/day ATRA for 16 weeks. Our results show that ATRA supplementation led to phase shifts and reduced amplitudes in clock genes. Under AL, ATRA reduced the average daily messenger RNA (mRNA) levels of some disease markers, such as liver Afp and jejunum Afp, Alt and Gadd45ß and aspartate transaminase (AST) protein in the serum, but increased the expression level of liver Crp mRNA. Under RF, ATRA reduced the average daily levels of jejunum Alt and Gadd45ß and AST protein in the serum, but increased liver Afp, Alt, Gadd45ß and Arginase mRNA. Altogether, our findings suggest that ATRA strongly affects circadian oscillation and disease marker levels. Moreover, its impact is different depending on the feeding regimen (AL or RF).
Subject(s)
CLOCK Proteins/genetics , Caloric Restriction , Circadian Clocks , Gene Expression Regulation , Tretinoin/pharmacology , Animals , Anti-Inflammatory Agents , Antigens, Differentiation/blood , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/genetics , C-Reactive Protein/metabolism , CLOCK Proteins/metabolism , Circadian Rhythm , Genetic Markers , Jejunum/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolismABSTRACT
The circadian clock regulates many aspects of physiology, energy metabolism, and sleep. Restricted feeding (RF), a regimen that restricts the duration of food availability entrains the circadian clock. Caffeine has been shown to affect both metabolism and sleep. However, its effect on clock gene and clock-controlled gene expression has not been studied. Here, we tested the effect of caffeine on circadian rhythms and the expression of disease and metabolic markers in the serum, liver, and jejunum of mice supplemented with caffeine under ad libitum (AL) feeding or RF for 16 weeks. Caffeine significantly affected circadian oscillation and the daily levels of disease and metabolic markers. Under AL, caffeine reduced the average daily mRNA levels of certain disease and inflammatory markers, such as liver alpha fetoprotein (Afp), C-reactive protein (Crp), jejunum alanine aminotransferase (Alt), growth arrest and DNA damage 45ß (Gadd45ß), Interleukin 1α (Il-1α), Il-1ß mRNA and serum plasminogen activator inhibitor 1 (PAI-1). Under RF, caffeine reduced the average daily levels of Alt, Gadd45ß, Il-1α and Il-1ß mRNA in the jejunum, but not in the liver. In addition, caffeine supplementation led to decreased expression of catabolic factors under RF. In conclusion, caffeine affects circadian gene expression and metabolism possibly leading to beneficial effects mainly under AL feeding.