Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Anal Chem ; 95(17): 6888-6893, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37070825

ABSTRACT

For successful soil remediation and hydrocarbon exploration operations, determining the total petroleum hydrocarbon (TPH) content of soils is an indispensable process step. This paper reports on the performance of a handheld Fourier transform near-infrared (FT-NIR) spectrometer for rapid and quantitative determination of TPH content of soils from two different sites by diffuse reflection measurements. For rapid decisions for exploration work or environmental site assessment projects, a quick─preferably on-site─determination of TPH content is valuable. Diffuse reflection NIR spectra were recorded from soil samples of two different sites with TPH reference values ranging from 350 to 30,000 ppm, as determined by capillary gas chromatography and flame ionization detection with hydrocarbon fingerprinting C1-C44. However, this paper not only addresses the development of site-specific partial-least squares (PLS) calibrations but also demonstrates the locally-weighted PLS (LW-PLS) technique, which can be used to develop global, site-independent PLS calibrations without significant penalty in calibration performance. As a first step, the diffuse reflection spectra were used to develop conservative, site-specific PLS calibration models with root-mean-square calibration/cross-validation errors (RMSEC/RMSECV) of 1043/1106 and 741/785 ppm TPH, respectively, and the average absolute prediction errors for samples not contained in the calibration set were 451 and 293 ppm for the two sites, respectively. In a further step, significant degradation of the RMSE values of a conservative PLS model based on the NIR spectra of both sites was then compared to the application of the LW-PLS method, with only a slight loss of the prediction accuracy relative to the site-independent models. This study confirms the ability of next-generation portable FT-NIR spectrometers to predict low TPH levels in various soil types through both─soil-specific and site-independent─calibrations, giving these spectrometers the potential to become rapid screening tools in the field.

2.
J Environ Qual ; 49(4): 847-857, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33016494

ABSTRACT

Accurate quantification of petroleum hydrocarbons (PHCs) is required for optimizing remedial efforts at oil spill sites. While evaluating total petroleum hydrocarbons (TPH) in soils is often conducted using costly and time-consuming laboratory methods, visible and near-infrared reflectance spectroscopy (Vis-NIR) has been proven to be a rapid and cost-effective field-based method for soil TPH quantification. This study investigated whether Vis-NIR models calibrated from laboratory-constructed PHC soil samples could be used to accurately estimate TPH concentration of field samples. To evaluate this, a laboratory sample set was constructed by mixing crude oil with uncontaminated soil samples, and two field sample sets (F1 and F2) were collected from three PHC-impacted sites. The Vis-NIR TPH models were calibrated with four different techniques (partial least squares regression, random forest, artificial neural network, and support vector regression), and two model improvement methods (spiking and spiking with extra weight) were compared. Results showed that laboratory-based Vis-NIR models could predict TPH in field sample set F1 with moderate accuracy (R2  > .53) but failed to predict TPH in field sample set F2 (R2  < .13). Both spiking and spiking with extra weight improved the prediction of TPH in both field sample sets (R2 ranged from .63 to .88, respectively); the improvement was most pronounced for F2. This study suggests that Vis-NIR models developed from laboratory-constructed PHC soil samples, spiked by a small number of field sample analyses, can be used to estimate TPH concentrations more efficiently and cost effectively compared with generating site-specific calibrations.


Subject(s)
Petroleum Pollution/analysis , Petroleum , Soil Pollutants/analysis , Hydrocarbons , Soil
SELECTION OF CITATIONS
SEARCH DETAIL