Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Front Plant Sci ; 7: 95, 2016.
Article in English | MEDLINE | ID: mdl-26904065

ABSTRACT

Mitochondrial pyruvate dehydrogenase (mtPDH) is a key respiratory enzyme that links glycolysis and the tricarboxylic acid cycle, and it is negatively regulated by mtPDH kinase (mtPDHK). Arabidopsis lines carrying either a constitutive or seed-specific antisense construct for mtPDHK were used to test the hypothesis that alteration of mtPDH activity in a tissue- and dosage-dependent manner will enhance reproductive growth particularly at elevated CO2 (EC) through a combined enhancement of source and sink activities. Constitutive transgenic lines showed increased mtPDH activity in rosette leaves at ambient CO2 (AC) and EC, and in immature seeds at EC. Seed-specific transgenic lines showed enhanced mtPDH activity in immature seeds. A strong relationship existed between seed mtPDH activity and inflorescence initiation at AC, and at EC inflorescence stem growth, silique number and seed harvest index were strongly related to seed mtPDH activity. Leaf photosynthetic rates showed an increase in rosette leaves of transgenic lines at AC and EC that correlated with enhanced inflorescence initiation. Collectively, the data show that mtPDHK plays a key role in regulating sink and source activities in Arabidopsis particularly during the reproductive phase.

2.
J Exp Bot ; 57(4): 801-14, 2006.
Article in English | MEDLINE | ID: mdl-16449378

ABSTRACT

Diel C export from source leaves of two Flaveria linearis lines [85-1: high cytosolic fructose-1,6-bisphosphatase (cytFBPase) and 84-9: low cytFBPase] were estimated using three methods, including leaf steady-state (14)CO(2) labelling, leaf metabolite analysis, and leaf dry mass analysis in conjunction with leaf CO(2) exchange measurements. Synthesis and accumulation of starch during the daytime were much higher in 84-9. Relative (14)C-export (export as a % of photosynthesis) in the light was 36% higher in 85-1. The diel export patterns from (14)C-analyses correlated with those based on metabolite or dry weight/gas exchange analyses during the daytime, but not during the night. Night-time export estimated from (14)C-disappearance was 3.6 times lower than those estimated using the other methods. Even though the starch degradation at night was greater for 84-9, night-time export in 84-9 was similar to 85-1, since 84-9 showed both higher respiration and accumulation of soluble sugars (i.e. glucose) at night. Patterns of (14)C allocation to sink organs were also different in the two lines. Main stem growth was less in 84-9, being reduced most in the light when leaf export was lower relative to 85-1. Supplementation with sucrose for 1 h daily via the roots at a time when leaf export in 84-9 was low relative to 85-1 increased the stem growth rate of 84-9 to a level similar with that of 85-1. This study provides evidence that diel C availability predicted by source strength (e.g. C-export rate) influences main stem extension growth and the pattern of sink development in F. linearis.


Subject(s)
Carbon/metabolism , Circadian Rhythm/physiology , Flaveria/metabolism , Starch/metabolism , Sucrose/metabolism , Carbon Dioxide/metabolism , Carbon Radioisotopes , Flaveria/growth & development , Photosynthesis/physiology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Stems/growth & development , Plant Stems/metabolism
3.
J Exp Bot ; 54(381): 259-70, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12493853

ABSTRACT

Pyruvate dehydrogenase kinase (PDHK), a negative regulator of the mitochondrial pyruvate dehydrogenase complex (mtPDC), plays a pivotal role in controlling mtPDC activity, and hence, the TCA cycle and cell respiration. Previously, the cloning of a PDHK cDNA from Arabidopsis thaliana and the effects of constitutively down-regulating its expression on plant growth and development has been reported. The first detailed analyses of the biochemical and physiological effects of partial silencing of the mtPDHK in A. thaliana using antisense constructs driven by both constitutive and seed-specific promoters are reported here. The studies revealed an increased level of respiration in leaves of the constitutive antisense PDHK transgenics; an increase in respiration was also found in developing seeds of the seed-specific antisense transgenics. Both constitutive and seed-specific partial silencing of the mtPDHK resulted in increased seed oil content and seed weight at maturity. Feeding 3-(14)C pyruvate to bolted stems containing siliques (constitutive transgenics), or to isolated siliques or immature seeds (seed-specific transgenics) confirmed a higher rate of incorporation of radiolabel into all seed lipid species, particularly triacylglycerols. Neither constitutive nor seed-specific partial silencing of PDHK negatively affected overall silique and seed development. Instead, oil and seed yield, and overall plant productivity were improved. These findings suggest that a partial reduction of the repression of the mtPDC by antisense PDHK expression can alter carbon flux and, in particular, the contribution of carbon moieties from pyruvate to fatty acid biosynthesis and storage lipid accumulation in developing seeds, implicating a role for mtPDC in fatty acid biosynthesis in seeds.


Subject(s)
Arabidopsis/enzymology , Mitochondria/enzymology , Pyruvate Dehydrogenase Complex/metabolism , Antisense Elements (Genetics)/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cloning, Molecular , Fatty Acids/biosynthesis , Molecular Sequence Data , Plants, Genetically Modified , Pyruvate Dehydrogenase Complex/genetics , Seeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL