Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Nature ; 616(7957): 534-542, 2023 04.
Article in English | MEDLINE | ID: mdl-37046095

ABSTRACT

Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Clonal Evolution , Clone Cells , Evolution, Molecular , Lung Neoplasms , Neoplasm Metastasis , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Clone Cells/pathology , Cohort Studies , Disease Progression , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local
2.
Nature ; 616(7957): 525-533, 2023 04.
Article in English | MEDLINE | ID: mdl-37046096

ABSTRACT

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/etiology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Neoplasm Recurrence, Local/genetics , Phylogeny , Treatment Outcome , Smoking/genetics , Smoking/physiopathology , Mutagenesis , DNA Copy Number Variations
3.
Nature ; 583(7818): 807-812, 2020 07.
Article in English | MEDLINE | ID: mdl-32669708

ABSTRACT

The majority of targeted therapies for non-small-cell lung cancer (NSCLC) are directed against oncogenic drivers that are more prevalent in patients with light exposure to tobacco smoke1-3. As this group represents around 20% of all patients with lung cancer, the discovery of stratified medicine options for tobacco-associated NSCLC is a high priority. Umbrella trials seek to streamline the investigation of genotype-based treatments by screening tumours for multiple genomic alterations and triaging patients to one of several genotype-matched therapeutic agents. Here we report the current outcomes of 19 drug-biomarker cohorts from the ongoing National Lung Matrix Trial, the largest umbrella trial in NSCLC. We use next-generation sequencing to match patients to appropriate targeted therapies on the basis of their tumour genotype. The Bayesian trial design enables outcome data from open cohorts that are still recruiting to be reported alongside data from closed cohorts. Of the 5,467 patients that were screened, 2,007 were molecularly eligible for entry into the trial, and 302 entered the trial to receive genotype-matched therapy-including 14 that re-registered to the trial for a sequential trial drug. Despite pre-clinical data supporting the drug-biomarker combinations, current evidence shows that a limited number of combinations demonstrate clinically relevant benefits, which remain concentrated in patients with lung cancers that are associated with minimal exposure to tobacco smoke.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Genetic Markers , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Molecular Targeted Therapy , Precision Medicine , Smoking/genetics , Bayes Theorem , Carcinoma, Non-Small-Cell Lung/etiology , Clinical Protocols , Clinical Trials as Topic , Cohort Studies , Genotype , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/etiology , Oncogenes/genetics , Patient Selection , Smoke/adverse effects , Triage
6.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34521767

ABSTRACT

Early stages of colorectal cancer (CRC) development are characterized by a complex rewiring of transcriptional networks resulting in changes in the expression of multiple genes. Here, we demonstrate that the deletion of a poorly studied tetraspanin protein Tspan6 in Apcmin/+ mice, a well-established model for premalignant CRC, resulted in increased incidence of adenoma formation and tumor size. We demonstrate that the effect of Tspan6 deletion results in the activation of EGF-dependent signaling pathways through increased production of the transmembrane form of TGF-α (tmTGF-α) associated with extracellular vesicles. This pathway is modulated by an adaptor protein syntenin-1, which physically links Tspan6 and tmTGF-α. In support of this, the expression of Tspan6 is frequently decreased or lost in CRC, and this correlates with poor survival. Furthermore, the analysis of samples from the epidermal growth factor receptor (EGFR)-targeting clinical trial (COIN trial) has shown that the expression of Tspan6 in CRC correlated with better patient responses to EGFR-targeted therapy involving Cetuximab. Importantly, Tspan6-positive patients with tumors in the proximal colon (right-sided) and those with KRAS mutations had a better response to Cetuximab than the patients that expressed low Tspan6 levels. These results identify Tspan6 as a regulator of CRC development and a potential predictive marker for EGFR-targeted therapies in CRC beyond RAS pathway mutations.


Subject(s)
Biomarkers, Tumor/metabolism , Cetuximab/pharmacology , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Tetraspanins/metabolism , Tetraspanins/physiology , Animals , Antineoplastic Agents, Immunological/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Prognosis , Survival Rate , Tetraspanins/genetics , Tumor Cells, Cultured
7.
Br J Cancer ; 128(2): 161-164, 2023 01.
Article in English | MEDLINE | ID: mdl-36599918

ABSTRACT

Genomic screening is routinely used to guide the treatment of cancer patients in many countries. However, several multi-layered factors make this effort difficult to deliver within a clinically relevant timeframe. Here we share the learnings from the CRUK-funded Stratified Medicine Programme for advanced NSCLC patients, which could be useful to better plan future studies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , United Kingdom
8.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982838

ABSTRACT

There is increasing evidence in a range of cancer types that the microbiome plays a direct role in modulating the anti-cancer immune response both at the gut level and systemically. Differences in the gut microbiota have been shown to correlate with differences in immunotherapy responses in a range of non-gastrointestinal tract cancers. DNA mismatch repair-deficient (dMMR) colorectal cancer (CRC) is radically different to DNA mismatch repair-proficient (pMMR) CRC in clinical phenotype and in its very good responses to immunotherapy. While this has usually been thought to be due to the high mutational burden in dMMR CRC, the gut microbiome is radically different in dMMR and pMMR CRC in terms of both composition and diversity. It is probable that differences in the gut microbiota contribute to the varied responses to immunotherapy in dMMR versus pMMR CRC. Targeting the microbiome offers a way to boost the response and increase the selection of patients who might benefit from this therapy. This paper reviews the available literature on the role of the microbiome in the response to immunotherapy in dMMR and pMMR CRC, explores the potential causal relationship and discusses future directions for study in this exciting and rapidly changing field.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Immunotherapy , Microsatellite Repeats , DNA Mismatch Repair , Microsatellite Instability
9.
Lancet Oncol ; 23(6): 748-757, 2022 06.
Article in English | MEDLINE | ID: mdl-35617989

ABSTRACT

BACKGROUND: People with cancer are at increased risk of hospitalisation and death following infection with SARS-CoV-2. Therefore, we aimed to conduct one of the first evaluations of vaccine effectiveness against breakthrough SARS-CoV-2 infections in patients with cancer at a population level. METHODS: In this population-based test-negative case-control study of the UK Coronavirus Cancer Evaluation Project (UKCCEP), we extracted data from the UKCCEP registry on all SARS-CoV-2 PCR test results (from the Second Generation Surveillance System), vaccination records (from the National Immunisation Management Service), patient demographics, and cancer records from England, UK, from Dec 8, 2020, to Oct 15, 2021. Adults (aged ≥18 years) with cancer in the UKCCEP registry were identified via Public Health England's Rapid Cancer Registration Dataset between Jan 1, 2018, and April 30, 2021, and comprised the cancer cohort. We constructed a control population cohort from adults with PCR tests in the UKCCEP registry who were not contained within the Rapid Cancer Registration Dataset. The coprimary endpoints were overall vaccine effectiveness against breakthrough infections after the second dose (positive PCR COVID-19 test) and vaccine effectiveness against breakthrough infections at 3-6 months after the second dose in the cancer cohort and control population. FINDINGS: The cancer cohort comprised 377 194 individuals, of whom 42 882 had breakthrough SARS-CoV-2 infections. The control population consisted of 28 010 955 individuals, of whom 5 748 708 had SARS-CoV-2 breakthrough infections. Overall vaccine effectiveness was 69·8% (95% CI 69·8-69·9) in the control population and 65·5% (65·1-65·9) in the cancer cohort. Vaccine effectiveness at 3-6 months was lower in the cancer cohort (47·0%, 46·3-47·6) than in the control population (61·4%, 61·4-61·5). INTERPRETATION: COVID-19 vaccination is effective for individuals with cancer, conferring varying levels of protection against breakthrough infections. However, vaccine effectiveness is lower in patients with cancer than in the general population. COVID-19 vaccination for patients with cancer should be used in conjunction with non-pharmacological strategies and community-based antiviral treatment programmes to reduce the risk that COVID-19 poses to patients with cancer. FUNDING: University of Oxford, University of Southampton, University of Birmingham, Department of Health and Social Care, and Blood Cancer UK.


Subject(s)
COVID-19 , Neoplasms , Viral Vaccines , Adolescent , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Humans , Neoplasms/epidemiology , SARS-CoV-2 , Vaccine Efficacy
10.
Br J Cancer ; 126(2): 238-246, 2022 02.
Article in English | MEDLINE | ID: mdl-34728792

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. Surgical resection remains the definitive curative treatment for early-stage disease offering an overall 5-year survival rate of 62%. Despite careful case selection, a significant proportion of early-stage cancers relapse aggressively within the first year post-operatively. Identification of these patients is key to accurate prognostication and understanding the biology that drives early relapse might open up potential novel adjuvant therapies. METHODS: We performed an unsupervised interrogation of >1600 serum-based autoantibody biomarkers using an iterative machine-learning algorithm. RESULTS: We identified a 13 biomarker signature that was highly predictive for survivorship in post-operative early-stage lung cancer; this outperforms currently used autoantibody biomarkers in solid cancers. Our results demonstrate significantly poor survivorship in high expressers of this biomarker signature with an overall 5-year survival rate of 7.6%. CONCLUSIONS: We anticipate that the data will lead to the development of an off-the-shelf prognostic panel and further that the oncogenic relevance of the proteins recognised in the panel may be a starting point for a new adjuvant therapy.


Subject(s)
Autoantibodies/blood , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Protein Array Analysis/methods , Aged , Autoantibodies/immunology , Biomarkers, Tumor/immunology , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/immunology , Computational Biology/methods , Female , Humans , Lung Neoplasms/blood , Lung Neoplasms/immunology , Male , Prognosis , ROC Curve
11.
Br J Haematol ; 196(4): 892-901, 2022 02.
Article in English | MEDLINE | ID: mdl-34761389

ABSTRACT

Patients with haematological malignancies have a high risk of severe infection and death from SARS-CoV-2. In this prospective observational study, we investigated the impact of cancer type, disease activity, and treatment in 877 unvaccinated UK patients with SARS-CoV-2 infection and active haematological cancer. The primary end-point was all-cause mortality. In a multivariate analysis adjusted for age, sex and comorbidities, the highest mortality was in patients with acute leukaemia [odds ratio (OR) = 1·73, 95% confidence interval (CI) 1·1-2·72, P = 0·017] and myeloma (OR 1·3, 95% CI 0·96-1·76, P = 0·08). Having uncontrolled cancer (newly diagnosed awaiting treatment as well as relapsed or progressive disease) was associated with increased mortality risk (OR = 2·45, 95% CI 1·09-5·5, P = 0·03), as was receiving second or beyond line of treatment (OR = 1·7, 95% CI 1·08-2·67, P = 0·023). We found no association between recent cytotoxic chemotherapy or anti-CD19/anti-CD20 treatment and increased risk of death within the limitations of the cohort size. Therefore, disease control is an important factor predicting mortality in the context of SARS-CoV-2 infection alongside the possible risks of therapies such as cytotoxic treatment or anti-CD19/anti-CD20 treatments.


Subject(s)
Antigens, CD20/immunology , Antineoplastic Agents, Immunological/therapeutic use , COVID-19/complications , Hematologic Neoplasms/complications , Hematologic Neoplasms/drug therapy , Adult , Antineoplastic Agents, Immunological/adverse effects , COVID-19/etiology , COVID-19/immunology , Female , Hematologic Neoplasms/immunology , Humans , Leukemia/complications , Leukemia/drug therapy , Leukemia/immunology , Male , Multiple Myeloma/complications , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Prospective Studies , Risk Factors
12.
Cancer Immunol Immunother ; 71(7): 1583-1596, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34727230

ABSTRACT

BACKGROUND: Monocytic myeloid-derived suppressor cells (M-MDSCs) are significantly expanded in the blood of colorectal cancer (CRC) patients. However, their presence and underlying mechanisms in the tumour microenvironment of CRC have not been examined in detail. METHODS: Tumour tissues and peripheral blood from CRC patients were analysed for the presence of M-MDSCs. The mechanisms of suppression were analysed by blocking pathways by which MDSCs abrogate T cell proliferation. Co-culture of CRC cells with monocytes were performed with and without cytokine blocking antibodies to determine the mechanism by which CRC cells polarise monocytes. Multi-spectral IHC was used to demonstrate the intra-tumoral location of M-MDSCs. RESULTS: Tumour tissues and blood of CRC patients contain M-MDSCs which inhibit T cell proliferation. Whilst inhibition of arginase and nitric oxide synthase 2 fail to rescue T cell proliferation, blockade of IL-10 released by these HLA-DR- cells abrogates the suppresivity of M-MDSCs. Tumour conditioned media (TCM) significantly reduces HLA-DR expression, increases IL-10 release from monocytes and causes them to become suppressive. TGF-ß is highly expressed in the TCM and accumulates in the plasma. TGF-ß reduces HLA-DR expression and drives monocyte immunosuppressivity. The invasive margin of CRC is enriched in CD14+ HLA-DR- cells in close proximity to T cells. CONCLUSIONS: Our study demonstrates the cross-talk between CRC cells, M-MDSCs and T cells. Characterisation of CRC M-MDSCs point to therapeutic avenues to target these cells in addition to TGF-ß blockade.


Subject(s)
Colorectal Neoplasms , Myeloid-Derived Suppressor Cells , Transforming Growth Factor beta , Colorectal Neoplasms/metabolism , HLA-DR Antigens , Humans , Interleukin-10/metabolism , Monocytes , Phenotype , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
13.
Nature ; 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34285401
14.
Clin Trials ; 19(2): 146-157, 2022 04.
Article in English | MEDLINE | ID: mdl-35083924

ABSTRACT

BACKGROUND: Complex innovative design trials are becoming increasingly common and offer potential for improving patient outcomes in a faster time frame. FOCUS4 was the first molecularly stratified trial in metastatic colorectal cancer and it remains one of the first umbrella trial designs to be launched globally. Here, we aim to describe lessons learned from delivery of the trial over the last 10 years. METHODS: FOCUS4 was a Phase II/III molecularly stratified umbrella trial testing the safety and efficacy of targeted therapies in metastatic colorectal cancer. It used adaptive statistical methodology to decide which sub-trial should close early, and new therapies were added as protocol amendments. Patients with newly diagnosed metastatic colorectal cancer were registered, and central laboratory testing was used to stratify their tumour into molecular subtypes. Following 16 weeks of first-line therapy, patients with stable or responding disease were eligible for randomisation into either a molecularly stratified sub-trial (FOCUS4-B, C or D) or non-stratified FOCUS4-N. The primary outcome for all studies was progression-free survival comparing the intervention with active monitoring/placebo. At the close of the trial, feedback was elicited from all investigators through surveys and interviews and consolidated into a series of recommendations and lessons learned for the delivery of similar future trials. RESULTS: Between January 2014 and October 2020, 1434 patients were registered from 88 UK hospitals. Of the 20 drug combinations that were explored for inclusion in the platform trial, three molecularly targeted sub-trials were activated: FOCUS4-D (February 2014-March 2016) evaluated AZD8931 in the BRAF-PIK3CA-RAS wildtype subgroup; FOCUS4-B (February 2016-July 2018) evaluated aspirin in the PIK3CA mutant subgroup and FOCUS4-C (June 2017-October 2020) evaluated adavosertib in the RAS+TP53 double mutant subgroup. FOCUS4-N was active throughout and evaluated capecitabine monotherapy versus a treatment break. A total of 361 (25%) registered patients were randomised into a sub-trial. Feedback on the experiences of delivery of FOCUS4 could be grouped into three main areas of challenge: funding/infrastructure, biomarker testing procedures and trial design efficiencies within which 20 recommendations are summarised. CONCLUSION: Adaptive stratified medicine platform studies are feasible in common cancers but present challenges. Our stakeholder feedback has helped to inform how these trial designs can succeed and answer multiple questions efficiently, providing resource is adequate.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans
15.
Gut ; 70(9): 1632-1641, 2021 09.
Article in English | MEDLINE | ID: mdl-33199443

ABSTRACT

OBJECTIVE: Epidermal growth factor receptor (EGFR) inhibition may be effective in biomarker-selected populations of advanced gastro-oesophageal adenocarcinoma (aGEA) patients. Here, we tested the association between outcome and EGFR copy number (CN) in pretreatment tissue and plasma cell-free DNA (cfDNA) of patients enrolled in a randomised first-line phase III clinical trial of chemotherapy or chemotherapy plus the anti-EGFR monoclonal antibody panitumumab in aGEA (NCT00824785). DESIGN: EGFR CN by either fluorescence in situ hybridisation (n=114) or digital-droplet PCR in tissues (n=250) and plasma cfDNAs (n=354) was available for 474 (86%) patients in the intention-to-treat (ITT) population. Tissue and plasma low-pass whole-genome sequencing was used to screen for coamplifications in receptor tyrosine kinases. Interaction between chemotherapy and EGFR inhibitors was modelled in patient-derived organoids (PDOs) from aGEA patients. RESULTS: EGFR amplification in cfDNA correlated with poor survival in the ITT population and similar trends were observed when the analysis was conducted in tissue and plasma by treatment arm. EGFR inhibition in combination with chemotherapy did not correlate with improved survival, even in patients with significant EGFR CN gains. Addition of anti-EGFR inhibitors to the chemotherapy agent epirubicin in PDOs, resulted in a paradoxical increase in viability and accelerated progression through the cell cycle, associated with p21 and cyclin B1 downregulation and cyclin E1 upregulation, selectively in organoids from EGFR-amplified aGEA. CONCLUSION: EGFR CN can be accurately measured in tissue and liquid biopsies and may be used for the selection of aGEA patients. EGFR inhibitors may antagonise the antitumour effect of anthracyclines with important implications for the design of future combinatorial trials.


Subject(s)
Adenocarcinoma/drug therapy , Antibiotics, Antineoplastic/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Epirubicin/therapeutic use , ErbB Receptors/antagonists & inhibitors , Esophageal Neoplasms/drug therapy , Panitumumab/therapeutic use , Stomach Neoplasms/drug therapy , Adenocarcinoma/chemistry , Aged , Antibiotics, Antineoplastic/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols , Biomarkers, Tumor/analysis , Epirubicin/administration & dosage , ErbB Receptors/analysis , Esophageal Neoplasms/chemistry , Humans , Male , Middle Aged , Panitumumab/administration & dosage , Stomach Neoplasms/chemistry
16.
Lancet ; 395(10241): 1919-1926, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32473682

ABSTRACT

BACKGROUND: Individuals with cancer, particularly those who are receiving systemic anticancer treatments, have been postulated to be at increased risk of mortality from COVID-19. This conjecture has considerable effect on the treatment of patients with cancer and data from large, multicentre studies to support this assumption are scarce because of the contingencies of the pandemic. We aimed to describe the clinical and demographic characteristics and COVID-19 outcomes in patients with cancer. METHODS: In this prospective observational study, all patients with active cancer and presenting to our network of cancer centres were eligible for enrolment into the UK Coronavirus Cancer Monitoring Project (UKCCMP). The UKCCMP is the first COVID-19 clinical registry that enables near real-time reports to frontline doctors about the effects of COVID-19 on patients with cancer. Eligible patients tested positive for severe acute respiratory syndrome coronavirus 2 on RT-PCR assay from a nose or throat swab. We excluded patients with a radiological or clinical diagnosis of COVID-19, without a positive RT-PCR test. The primary endpoint was all-cause mortality, or discharge from hospital, as assessed by the reporting sites during the patient hospital admission. FINDINGS: From March 18, to April 26, 2020, we analysed 800 patients with a diagnosis of cancer and symptomatic COVID-19. 412 (52%) patients had a mild COVID-19 disease course. 226 (28%) patients died and risk of death was significantly associated with advancing patient age (odds ratio 9·42 [95% CI 6·56-10·02]; p<0·0001), being male (1·67 [1·19-2·34]; p=0·003), and the presence of other comorbidities such as hypertension (1·95 [1·36-2·80]; p<0·001) and cardiovascular disease (2·32 [1·47-3·64]). 281 (35%) patients had received cytotoxic chemotherapy within 4 weeks before testing positive for COVID-19. After adjusting for age, gender, and comorbidities, chemotherapy in the past 4 weeks had no significant effect on mortality from COVID-19 disease, when compared with patients with cancer who had not received recent chemotherapy (1·18 [0·81-1·72]; p=0·380). We found no significant effect on mortality for patients with immunotherapy, hormonal therapy, targeted therapy, radiotherapy use within the past 4 weeks. INTERPRETATION: Mortality from COVID-19 in cancer patients appears to be principally driven by age, gender, and comorbidities. We are not able to identify evidence that cancer patients on cytotoxic chemotherapy or other anticancer treatment are at an increased risk of mortality from COVID-19 disease compared with those not on active treatment. FUNDING: University of Birmingham, University of Oxford.


Subject(s)
Antineoplastic Agents/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/mortality , Neoplasms/complications , Neoplasms/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Age Factors , Aged , Betacoronavirus , COVID-19 , Cause of Death , Comorbidity , Female , Humans , Male , Middle Aged , Neoplasms/mortality , Pandemics , Prospective Studies , Risk Factors , SARS-CoV-2 , Sex Factors
17.
Oncologist ; 26(2): e261-e269, 2021 02.
Article in English | MEDLINE | ID: mdl-33191588

ABSTRACT

BACKGROUND: The multicenter, open-label, randomized, phase III EPIC study (EMR 062202-025) investigated cetuximab plus irinotecan versus irinotecan in patients with epidermal growth factor receptor-detectable metastatic colorectal cancer (mCRC) that progressed on first-line fluoropyrimidine- and oxaliplatin-based chemotherapy; we report the outcomes of patients with RAS-wild-type (wt) disease. MATERIALS AND METHODS: Available DNA samples from RAS-unselected patients (n = 1,164 of 1,298 [89.7%]) were reanalyzed for RAS mutations using beads, emulsion, amplification, and magnetics. Baseline characteristics, efficacy, safety, and poststudy therapy were assessed. RAS-wt status was defined as a mutated RAS allele frequency of ≤5%, with all relevant alleles being analyzable. RESULTS: Baseline characteristics were comparable between the groups (n = 452 patients with RAS-wt mCRC; cetuximab plus irinotecan n = 231, irinotecan n = 221) and between the RAS-wt and RAS-unselected populations. In the cetuximab plus irinotecan versus irinotecan arms, median overall survival was 12.3 versus 12.0 months, median progression-free survival (PFS) was 5.4 versus 2.6 months, and objective response rate (ORR) was 29.4% versus 5.0%, respectively. Quality of life (QoL) was improved in the cetuximab plus irinotecan arm. Serious adverse events occurred in 45.4% (cetuximab plus irinotecan) and 42.4% (irinotecan) of patients. In total, 47.1% of patients in the irinotecan arm received subsequent cetuximab therapy. CONCLUSION: PFS, ORR, and QoL were improved with cetuximab plus irinotecan as a second-line treatment in patients with RAS-wt mCRC, confirming that cetuximab-based therapy is suitable in this population. Almost half of patients in the irinotecan arm received poststudy cetuximab, masking a potential overall survival benefit of cetuximab addition. IMPLICATIONS FOR PRACTICE: Cetuximab is approved for the treatment of RAS-wild-type metastatic colorectal cancer (mCRC). In this retrospective analysis of the phase III EPIC study (cetuximab plus irinotecan vs. irinotecan alone as second-line treatment in patients with RAS-unselected mCRC), the subgroup of patients with RAS-wild-type mCRC who received cetuximab plus irinotecan had improved progression-free survival, objective response rate, and quality of life compared with the RAS-unselected population. These findings suggest that cetuximab-based therapy is a suitable second-line treatment for patients with RAS-wild-type mCRC.


Subject(s)
Colorectal Neoplasms , Quality of Life , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Camptothecin/therapeutic use , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Disease-Free Survival , Fluorouracil/therapeutic use , Humans , Irinotecan/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Retrospective Studies
18.
Lancet Oncol ; 21(10): 1309-1316, 2020 10.
Article in English | MEDLINE | ID: mdl-32853557

ABSTRACT

BACKGROUND: Patients with cancer are purported to have poor COVID-19 outcomes. However, cancer is a heterogeneous group of diseases, encompassing a spectrum of tumour subtypes. The aim of this study was to investigate COVID-19 risk according to tumour subtype and patient demographics in patients with cancer in the UK. METHODS: We compared adult patients with cancer enrolled in the UK Coronavirus Cancer Monitoring Project (UKCCMP) cohort between March 18 and May 8, 2020, with a parallel non-COVID-19 UK cancer control population from the UK Office for National Statistics (2017 data). The primary outcome of the study was the effect of primary tumour subtype, age, and sex and on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence and the case-fatality rate during hospital admission. We analysed the effect of tumour subtype and patient demographics (age and sex) on prevalence and mortality from COVID-19 using univariable and multivariable models. FINDINGS: 319 (30·6%) of 1044 patients in the UKCCMP cohort died, 295 (92·5%) of whom had a cause of death recorded as due to COVID-19. The all-cause case-fatality rate in patients with cancer after SARS-CoV-2 infection was significantly associated with increasing age, rising from 0·10 in patients aged 40-49 years to 0·48 in those aged 80 years and older. Patients with haematological malignancies (leukaemia, lymphoma, and myeloma) had a more severe COVID-19 trajectory compared with patients with solid organ tumours (odds ratio [OR] 1·57, 95% CI 1·15-2·15; p<0·0043). Compared with the rest of the UKCCMP cohort, patients with leukaemia showed a significantly increased case-fatality rate (2·25, 1·13-4·57; p=0·023). After correction for age and sex, patients with haematological malignancies who had recent chemotherapy had an increased risk of death during COVID-19-associated hospital admission (OR 2·09, 95% CI 1·09-4·08; p=0·028). INTERPRETATION: Patients with cancer with different tumour types have differing susceptibility to SARS-CoV-2 infection and COVID-19 phenotypes. We generated individualised risk tables for patients with cancer, considering age, sex, and tumour subtype. Our results could be useful to assist physicians in informed risk-benefit discussions to explain COVID-19 risk and enable an evidenced-based approach to national social isolation policies. FUNDING: University of Birmingham and University of Oxford.


Subject(s)
Coronavirus Infections/mortality , Neoplasms/mortality , Pandemics , Pneumonia, Viral/mortality , Adult , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Hospitalization , Humans , Male , Middle Aged , Neoplasms/pathology , Neoplasms/virology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Prospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2
19.
Br J Cancer ; 123(5): 691-693, 2020 09.
Article in English | MEDLINE | ID: mdl-32546835
20.
N Engl J Med ; 376(22): 2109-2121, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28445112

ABSTRACT

BACKGROUND: Among patients with non-small-cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine the clonal nature of driver events and evolutionary processes in early-stage NSCLC. METHODS: In this prospective cohort study, we performed multiregion whole-exome sequencing on 100 early-stage NSCLC tumors that had been resected before systemic therapy. We sequenced and analyzed 327 tumor regions to define evolutionary histories, obtain a census of clonal and subclonal events, and assess the relationship between intratumor heterogeneity and recurrence-free survival. RESULTS: We observed widespread intratumor heterogeneity for both somatic copy-number alterations and mutations. Driver mutations in EGFR, MET, BRAF, and TP53 were almost always clonal. However, heterogeneous driver alterations that occurred later in evolution were found in more than 75% of the tumors and were common in PIK3CA and NF1 and in genes that are involved in chromatin modification and DNA damage response and repair. Genome doubling and ongoing dynamic chromosomal instability were associated with intratumor heterogeneity and resulted in parallel evolution of driver somatic copy-number alterations, including amplifications in CDK4, FOXA1, and BCL11A. Elevated copy-number heterogeneity was associated with an increased risk of recurrence or death (hazard ratio, 4.9; P=4.4×10-4), which remained significant in multivariate analysis. CONCLUSIONS: Intratumor heterogeneity mediated through chromosome instability was associated with an increased risk of recurrence or death, a finding that supports the potential value of chromosome instability as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601 .).


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Chromosomal Instability , Genetic Heterogeneity , Lung Neoplasms/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Carcinoma, Non-Small-Cell Lung/mortality , DNA Copy Number Variations , Disease-Free Survival , Evolution, Molecular , Exome , Female , Humans , Lung Neoplasms/mortality , Male , Phylogeny , Prognosis , Prospective Studies , Risk Factors , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL