Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nat Immunol ; 22(4): 434-448, 2021 04.
Article in English | MEDLINE | ID: mdl-33649580

ABSTRACT

T cells dynamically interact with multiple, distinct cellular subsets to determine effector and memory differentiation. Here, we developed a platform to quantify cell location in three dimensions to determine the spatial requirements that direct T cell fate. After viral infection, we demonstrated that CD8+ effector T cell differentiation is associated with positioning at the lymph node periphery. This was instructed by CXCR3 signaling since, in its absence, T cells are confined to the lymph node center and alternatively differentiate into stem-like memory cell precursors. By mapping the cellular sources of CXCR3 ligands, we demonstrated that CXCL9 and CXCL10 are expressed by spatially distinct dendritic and stromal cell subsets. Unlike effector cells, retention of stem-like memory precursors in the paracortex is associated with CCR7 expression. Finally, we demonstrated that T cell location can be tuned, through deficiency in CXCL10 or type I interferon signaling, to promote effector or stem-like memory fates.


Subject(s)
Arenaviridae Infections/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Chemokine CXCL10/metabolism , Chemokine CXCL9/metabolism , Immunologic Memory , Lymph Nodes/metabolism , Precursor Cells, T-Lymphoid/metabolism , Receptors, CXCR3/metabolism , Animals , Arenaviridae Infections/genetics , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Lineage , Cells, Cultured , Chemokine CXCL10/genetics , Chemokine CXCL9/genetics , Chemotaxis, Leukocyte , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Host-Pathogen Interactions , Interferon Type I/metabolism , Ligands , Lymph Nodes/immunology , Lymph Nodes/virology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Precursor Cells, T-Lymphoid/immunology , Precursor Cells, T-Lymphoid/virology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Receptors, CCR7/metabolism , Receptors, CXCR3/genetics , Signal Transduction , Stem Cell Niche , Stromal Cells/immunology , Stromal Cells/metabolism
2.
Immunity ; 57(4): 834-836, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599174

ABSTRACT

Various microbial metabolites promote cell transformation. In this issue of Immunity, Cong et al. show that deoxycholic acid (DCA), a microbial metabolite of bile, promotes tumor growth by suppressing antitumor CD8+ T cell responses via dysregulation of calcium efflux.


Subject(s)
Deoxycholic Acid , Neoplasms , Humans , Bile , Apoptosis , Bile Acids and Salts
3.
Nat Immunol ; 17(2): 179-86, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26595889

ABSTRACT

Intestinal T cells and group 3 innate lymphoid cells (ILC3 cells) control the composition of the microbiota and gut immune responses. Within the gut, ILC3 subsets coexist that either express or lack the natural cytoxicity receptor (NCR) NKp46. We identified here the transcriptional signature associated with the transcription factor T-bet-dependent differentiation of NCR(-) ILC3 cells into NCR(+) ILC3 cells. Contrary to the prevailing view, we found by conditional deletion of the key ILC3 genes Stat3, Il22, Tbx21 and Mcl1 that NCR(+) ILC3 cells were redundant for the control of mouse colonic infection with Citrobacter rodentium in the presence of T cells. However, NCR(+) ILC3 cells were essential for cecal homeostasis. Our data show that interplay between intestinal ILC3 cells and adaptive lymphocytes results in robust complementary failsafe mechanisms that ensure gut homeostasis.


Subject(s)
Immunity, Innate , Interleukins/biosynthesis , Lymphocytes/immunology , Lymphocytes/metabolism , Animals , Citrobacter rodentium/immunology , Cluster Analysis , Disease Models, Animal , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/mortality , Enterobacteriaceae Infections/pathology , Female , Gene Expression Profiling , Gene Expression Regulation , Homeostasis , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Myeloid Cell Leukemia Sequence 1 Protein/deficiency , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Signal Transduction , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcriptome , Interleukin-22
4.
Immunity ; 50(1): 77-90.e5, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30611612

ABSTRACT

Dendritic cells (DCs) are can be broadly divided into conventional (cDC) and plasmacytoid (pDC) subsets. Despite the importance of this lineage diversity, its genetic basis is not fully understood. We found that conditional ablation of the Ets-family transcription factor PU.1 in DC-restricted progenitors led to increased pDC production at the expense of cDCs. PU.1 controlled many of the cardinal functions of DCs, such as antigen presentation by cDCs and type I interferon production by pDCs. Conditional ablation of PU.1 de-repressed the pDC transcriptional signature in cDCs. The combination of genome-wide mapping of PU.1 binding and gene expression analysis revealed a key role for PU.1 in maintaining cDC identity through the induction of the transcriptional regulator DC-SCRIPT. PU.1 activated DC-SCRIPT expression, which in turn promoted cDC formation, particularly of cDC1s, and repressed pDC development. Thus, cDC identity is regulated by a transcriptional node requiring PU.1 and DC-SCRIPT.


Subject(s)
DNA-Binding Proteins/metabolism , Dendritic Cells/physiology , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Antigen Presentation , Cell Differentiation , Cell Lineage , DNA-Binding Proteins/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Interferon Type I/metabolism , Mice , Mice, Transgenic , Nuclear Proteins/genetics , Proto-Oncogene Proteins/genetics , Signal Transduction , Trans-Activators/genetics , Transcription Factors/genetics , Transcriptome
5.
Nat Immunol ; 16(3): 276-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25599561

ABSTRACT

Foxp3(+) regulatory T (Treg) cells in visceral adipose tissue (VAT-Treg cells) are functionally specialized tissue-resident cells that prevent obesity-associated inflammation and preserve insulin sensitivity and glucose tolerance. Their development depends on the transcription factor PPAR-γ; however, the environmental cues required for their differentiation are unknown. Here we show that interleukin 33 (IL-33) signaling through the IL-33 receptor ST2 and myeloid differentiation factor MyD88 is essential for development and maintenance of VAT-Treg cells and sustains their transcriptional signature. Furthermore, the transcriptional regulators BATF and IRF4 were necessary for VAT-Treg differentiation through direct regulation of ST2 and PPAR-γ expression. IL-33 administration induced vigorous population expansion of VAT-Treg cells, which tightly correlated with improvements in metabolic parameters in obese mice. Human omental adipose tissue Treg cells also showed high ST2 expression, suggesting an evolutionarily conserved requirement for IL-33 in VAT-Treg cell homeostasis.


Subject(s)
Adipose Tissue/cytology , Basic-Leucine Zipper Transcription Factors/metabolism , Interferon Regulatory Factors/metabolism , Interleukins/metabolism , T-Lymphocytes, Regulatory/cytology , Adipose Tissue/metabolism , Animals , Cell Differentiation/physiology , Humans , Interleukin-33 , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Differentiation Factor 88/metabolism , Obesity/metabolism , PPAR gamma/metabolism , Receptors, Cell Surface/metabolism , T-Lymphocytes, Regulatory/metabolism
6.
Immunity ; 48(3): 570-583.e8, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29562203

ABSTRACT

Polymorphisms in NFKB1 that diminish its expression have been linked to human inflammatory diseases and increased risk for epithelial cancers. The underlying mechanisms are unknown, and the link is perplexing given that NF-κB signaling reportedly typically exerts pro-tumorigenic activity. Here we have shown that NF-κB1 deficiency, even loss of a single allele, resulted in spontaneous invasive gastric cancer (GC) in mice that mirrored the histopathological progression of human intestinal-type gastric adenocarcinoma. Bone marrow chimeras revealed that NF-κB1 exerted tumor suppressive functions in both epithelial and hematopoietic cells. RNA-seq analysis showed that NF-κB1 deficiency resulted in aberrant JAK-STAT signaling, which dysregulated expression of effectors of inflammation, antigen presentation, and immune checkpoints. Concomitant loss of STAT1 prevented these immune abnormalities and GC development. These findings provide mechanistic insight into how polymorphisms that attenuate NFKB1 expression predispose humans to epithelial cancers, highlighting the pro-tumorigenic activity of STAT1 and identifying targetable vulnerabilities in GC.


Subject(s)
Gene Expression Regulation, Neoplastic , Inflammation/genetics , Inflammation/metabolism , NF-kappa B/deficiency , STAT1 Transcription Factor/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Animals , Antigen Presentation/immunology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Regulatory Networks , Humans , Inflammation/pathology , Mice , Mice, Knockout , STAT1 Transcription Factor/deficiency , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology
7.
Nat Immunol ; 14(4): 389-95, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23455676

ABSTRACT

NKp46+ innate lymphoid cells (ILCs) serve important roles in regulating the intestinal microbiota and defense against pathogens. Whether NKp46+ ILCs arise directly from lymphoid tissue-inducer (LTi) cells or represent a separate lineage remains controversial. We report here that the transcription factor T-bet (encoded by Tbx21) was essential for the development of NKp46+ ILCs but not of LTi cells or nuocytes. Deficiency in interleukin 22 (IL-22)-producing NKp46+ ILCs resulted in greater susceptibility of Tbx21-/- mice to intestinal infection. Haploinsufficient T-bet expression resulted in lower expression of the signaling molecule Notch, and Notch signaling was necessary for the transition of LTi cells into NKp46+ ILCs. Furthermore, NKp46+ ILCs differentiated solely from the CD4- LTi population, not the CD4+ LTi population. Our results pinpoint the regulation of Notch signaling by T-bet as a distinct molecular pathway that guides the development of NKp46+ ILCs.


Subject(s)
Antigens, Ly/metabolism , Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Receptors, Notch/metabolism , Signal Transduction , T-Box Domain Proteins/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Lymphocyte Subsets/cytology , Mice , Mice, Knockout , T-Box Domain Proteins/genetics
8.
Immunity ; 44(1): 103-115, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26795246

ABSTRACT

The inhibitor of DNA binding 2 (Id2) is essential for natural killer (NK) cell development with its canonical role being to antagonize E-protein function and alternate lineage fate. Here we have identified a key role for Id2 in regulating interleukin-15 (IL-15) receptor signaling and homeostasis of NK cells by repressing multiple E-protein target genes including Socs3. Id2 deletion in mature NK cells was incompatible with their homeostasis due to impaired IL-15 receptor signaling and metabolic function and this could be rescued by strong IL-15 receptor stimulation or genetic ablation of Socs3. During NK cell maturation, we observed an inverse correlation between E-protein target genes and Id2. These results shift the current paradigm on the role of ID2, indicating that it is required not only to antagonize E-proteins during NK cell commitment, but constantly required to titrate E-protein activity to regulate NK cell fitness and responsiveness to IL-15.


Subject(s)
Cell Differentiation/immunology , Inhibitor of Differentiation Protein 2/immunology , Interleukin-15/immunology , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Animals , Cell Lineage/immunology , Cells, Cultured , Female , Flow Cytometry , Male , Mice , Mice, Mutant Strains , Receptors, Interleukin-15/immunology , Receptors, Interleukin-15/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/immunology , Transcription Factors/metabolism
9.
Bioinformatics ; 39(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37462540

ABSTRACT

SUMMARY: The 10x Genomics Chromium single-cell RNA sequencing technology is a powerful gene expression profiling platform, which is capable of profiling expression of thousands of genes in tens of thousands of cells simultaneously. This platform can produce hundreds of million reads in a single experiment, making it a very challenging task to quantify expression of genes in individual cells due to the massive data volume. Here, we present cellCounts, a new tool for efficient and accurate quantification of Chromium data. cellCounts employs the seed-and-vote strategy to align reads to a reference genome, collapses reads to Unique Molecular Identifiers (UMIs) and then assigns UMIs to genes based on the featureCounts program. Using both simulation and real datasets for evaluation, cellCounts was found to compare favourably to cellRanger and STARsolo. cellCounts is implemented in R, making it easily integrated with other R programs for analysing Chromium data. AVAILABILITY AND IMPLEMENTATION: cellCounts was implemented as a function in R package Rsubread that can be downloaded from http://bioconductor.org/packages/release/bioc/html/Rsubread.html. Data and analysis code used in this study can be freely accessed via La Trobe University's Institutional Repository at https://doi.org/10.26181/21588276.


Subject(s)
Genomics , Software , Humans , Genome , Gene Expression Profiling , Sequence Analysis, RNA
10.
Trends Immunol ; 42(12): 1063-1065, 2021 12.
Article in English | MEDLINE | ID: mdl-34774417

ABSTRACT

In two elegant studies, Tyler Jacks' group and colleagues unveil crucial interactions between dendritic cells and TCF1+CD8+ progenitor T cells, shaping their heterogeneity and offering potential to design new putative cancer immunotherapies and vaccines.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatocyte Nuclear Factor 1-alpha , Dendritic Cells , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Immunotherapy
11.
Immunity ; 43(6): 1101-11, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26682984

ABSTRACT

Tissue-resident memory T (Trm) cells contribute to local immune protection in non-lymphoid tissues such as skin and mucosa, but little is known about their transcriptional regulation. Here we showed that CD8(+)CD103(+) Trm cells, independent of circulating memory T cells, were sufficient for protection against infection and described molecular elements that were crucial for their development in skin and lung. We demonstrated that the T-box transcription factors (TFs) Eomes and T-bet combined to control CD8(+)CD103(+) Trm cell formation, such that their coordinate downregulation was crucial for TGF-ß cytokine signaling. TGF-ß signaling, in turn, resulted in reciprocal T-box TF downregulation. However, whereas extinguishment of Eomes was necessary for CD8(+)CD103(+) Trm cell development, residual T-bet expression maintained cell surface interleukin-15 (IL-15) receptor ß-chain (CD122) expression and thus IL-15 responsiveness. These findings indicate that the T-box TFs control the two cytokines, TGF-ß and IL-15, which are pivotal for CD8(+)CD103(+) Trm cell development and survival.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Interleukin-15/immunology , T-Box Domain Proteins/immunology , Transforming Growth Factor beta/immunology , Adoptive Transfer , Animals , Down-Regulation , Flow Cytometry , Gene Expression Regulation/immunology , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Polymerase Chain Reaction , T-Lymphocyte Subsets/immunology
13.
Nat Immunol ; 11(10): 897-904, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20835230

ABSTRACT

Interleukin 1ß (IL-1ß) is an important inflammatory mediator of type 2 diabetes. Here we show that oligomers of islet amyloid polypeptide (IAPP), a protein that forms amyloid deposits in the pancreas during type 2 diabetes, triggered the NLRP3 inflammasome and generated mature IL-1ß. One therapy for type 2 diabetes, glyburide, suppressed IAPP-mediated IL-1ß production in vitro. Processing of IL-1ß initiated by IAPP first required priming, a process that involved glucose metabolism and was facilitated by minimally oxidized low-density lipoprotein. Finally, mice transgenic for human IAPP had more IL-1ß in pancreatic islets, which localized together with amyloid and macrophages. Our findings identify previously unknown mechanisms in the pathogenesis of type 2 diabetes and treatment of pathology caused by IAPP.


Subject(s)
Amyloid/metabolism , Carrier Proteins/metabolism , Diabetes Mellitus, Type 2/immunology , Interleukin-1beta/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/metabolism , Diabetes Mellitus, Type 2/metabolism , Glyburide/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Islet Amyloid Polypeptide , Islets of Langerhans/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics
14.
Trends Immunol ; 40(12): 1149-1162, 2019 12.
Article in English | MEDLINE | ID: mdl-31734149

ABSTRACT

T cell factor-1 (TCF-1), encoded by Tcf7, is a transcription factor and histone deacetylase (HDAC) essential for commitment to both the T cell and the innate lymphoid cell (ILC) lineages in mammals. In this review, we discuss the multifunctional role of TCF-1 in establishing these lineages and the requirement for TCF-1 throughout lineage differentiation and maintenance of lineage stability. We highlight recent reports showing promise for TCF-1 as a novel biomarker to identify recently characterized subsets of exhausted CD8+ T cells that may help to predict patient responses to immune checkpoint blockade (ICB).


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Immunity/genetics , Neoplasms/immunology , T Cell Transcription Factor 1/metabolism , Virus Diseases/immunology , Animals , Cell Differentiation , Disease Resistance , Gene Expression Regulation , Humans , Mice , T Cell Transcription Factor 1/genetics
15.
Gastroenterology ; 159(4): 1444-1458.e15, 2020 10.
Article in English | MEDLINE | ID: mdl-32569771

ABSTRACT

BACKGROUND & AIMS: Activity of nuclear factor κB transcription factors and signaling via signal transducer and activator of transcription (STAT) are frequently altered in gastric cancer cells. Mice lacking NFKB1 (Nfkb1-/- mice) develop invasive gastric cancer, and their gastric tissues have increased levels of cytokines, such as interleukin (IL) 6, IL22, IL11, and tumor necrosis factor (TNF), as well as increased activation of STAT1. We investigated whether these cytokines were required for STAT1 activation in gastric tissues of mice and critical for gastric tumorigenesis. METHODS: We crossed Nfkb1-/- mice with Il6-/-, Il22-/-, Il11Rα-/-, and Tnf-/- mice. Stomach tissues from compound mutant mice were analyzed by histology, immunoblotting, and RNA sequencing. Lymphoid, myeloid, and epithelial cells were isolated from stomachs, and the levels of cytokines were determined by flow cytometric analysis. RESULTS: Nfkb1-/- mice developed gastritis, oxyntic atrophy, gastric dysplasia, and invasive tumors, whereas Nfkb1-/-Stat1-/- mice did not, even when followed for as long as 2 years. The levels of Il6, Il11, Il22, and Tnf messenger RNA were increased in the body and antrum of the stomachs from Nfkb1-/- mice, from 3-6 months of age. However, Nfkb1-/-Il6-/-, Nfkb1-/-Il22-/-, and Nfkb1-/-Il11Rα-/- mice still developed gastric tumors, although the absence of IL11 receptor (IL11R) significantly reduced development of invasive gastric tumors. Stomachs from Nfkb1-/-Tnf-/- mice exhibited significantly less gastritis and oxyntic atrophy and fewer tumors than Nfkb1-/- mice. This correlated with reduced activation of STAT1 and STAT3 and fewer numbers of T cells and B cells infiltrating the gastric body. Loss of STAT1 or TNF significantly reduced expression of PD-L1 on epithelial and myeloid (CD11b+) cells in the gastric mucosa of Nfkb1-/- mice-indeed, to the levels observed on the corresponding cells from wild-type mice. CONCLUSIONS: In studies of gastric tumor development in knockout mice, we found that loss of NFKB1 causes increased expression of TNF in the stomach and thereby drives activation of STAT1, resulting in an inflammatory immune response and the development of gastric cancer. IL11R appears to be required for the progression of gastric tumors to the invasive stage. These findings suggest that inhibitors of TNF, and possibly also inhibitors of IL11/IL11Rα, might be useful in the treatment of gastric cancer.


Subject(s)
Gastritis/pathology , NF-kappa B p50 Subunit/metabolism , STAT1 Transcription Factor/metabolism , Stomach Neoplasms/etiology , Stomach Neoplasms/pathology , Tumor Necrosis Factor-alpha/metabolism , Animals , Carcinogenesis , Gastritis/etiology , Gastritis/metabolism , Interleukin-11/metabolism , Interleukin-6/metabolism , Mice , Signal Transduction , Stomach Neoplasms/metabolism
16.
Immunol Cell Biol ; 96(10): 1083-1094, 2018 11.
Article in English | MEDLINE | ID: mdl-29870118

ABSTRACT

Plasmacytoid dendritic cells (pDCs) play a critical role in bridging the innate and adaptive immune systems. pDCs are specialized type I interferon (IFN) producers, which has implicated them as initiators of autoimmune pathogenesis. However, little is known about the downstream effectors of type I IFN signaling that amplify autoimmune responses. Here, we have used a chemokine reporter mouse to determine the CXCR3 ligand responses in DCs subsets. Following TLR7 stimulation, conventional type 1 and type 2 DCs (cDC1 and cDC2, respectively) uniformly upregulate CXCL10. By contrast, the proportion of chemokine positive pDCs was significantly less, and stable CXCL10+ and CXCL10- populations could be distinguished. CXCL9 expression was induced in all cDC1s, in half of the cDC2 but not by pDCs. The requirement for IFNAR signaling for chemokine reporter expression was interrogated by receptor blocking and deficiency and shown to be critical for CXCR3 ligand expression in Flt3-ligand-derived DCs. Chemokine-producing potential was not concordant with the previously identified markers of pDC heterogeneity. Finally, we show that CXCL10+ and CXCL10- populations are transcriptionally distinct, expressing unique transcriptional regulators, IFN signaling molecules, chemokines, cytokines, and cell surface markers. This work highlights CXCL10 as a downstream effector of type I IFN signaling and suggests a division of labor in pDCs subtypes that likely impacts their function as effectors of viral responses and as drivers of inflammation.


Subject(s)
Chemokine CXCL10/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Regulation , Toll-Like Receptor 7/agonists , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Cells, Cultured , Chemokine CXCL10/metabolism , Cytokines/metabolism , Gene Expression Profiling , Immunophenotyping , Interferon Type I/metabolism , Mice , Receptors, CXCR3/metabolism , Signal Transduction
17.
J Autoimmun ; 91: 73-82, 2018 07.
Article in English | MEDLINE | ID: mdl-29724515

ABSTRACT

Regulatory T (Treg) cells maintain immunological tolerance in steady-state and after immune challenge. Activated Treg cells can undergo further differentiation into an effector state that highly express genes critical for Treg cell function, including ICOS, TIGIT and IL-10, although how this process is controlled is poorly understood. Effector Treg cells also specifically express the transcriptional regulator Blimp-1 whose expression overlaps with many of the canonical markers associated with effector Treg cells, although not all ICOS+TIGIT+ Treg cells express Blimp-1 or IL-10. In this study, we addressed the role of Blimp-1 in effector Treg cell function. Mice lacking Blimp-1 specifically in Treg cells mature normally, but succumb to a multi-organ inflammatory disease later in life. Blimp-1 is not required for Treg cell differentiation, with mutant mice having increased numbers of effector Treg cells, but regulated a suite of genes involved in cell signaling, communication and survival, as well as being essential for the expression of the immune modulatory cytokine IL-10. Thus, Blimp-1 is a marker of effector Treg cells in all contexts examined and is required for the full functionality of these cells during aging.


Subject(s)
Aging/immunology , Inflammation/immunology , Positive Regulatory Domain I-Binding Factor 1/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation , Cells, Cultured , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Immune Tolerance , Inflammation/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/genetics , Signal Transduction
18.
J Immunol ; 191(8): 4383-91, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24038093

ABSTRACT

Innate lymphocyte populations play a central role in conferring protective immunity at the mucosal frontier. In this study, we demonstrate that T cell factor 1 (TCF-1; encoded by Tcf7), a transcription factor also important for NK and T cell differentiation, is expressed by multiple innate lymphoid cell (ILC) subsets, including GATA3(+) nuocytes (ILC2) and NKp46(+) ILCs (ILC3), which confer protection against lung and intestinal inflammation. TCF-1 was intrinsically required for the differentiation of both ILC2 and NKp46(+) ILC3. Loss of TCF-1 expression impaired the capacity of these ILC subsets to produce IL-5, IL-13, and IL-22 and resulted in crippled responses to intestinal infection with Citrobacter rodentium. Furthermore, a reduction in T-bet expression required for Notch-2-dependent development of NKp46(+) ILC3 showed a dose-dependent reduction in TCF-1 expression. Collectively, our findings demonstrate an essential requirement for TCF-1 in ILC2 differentiation and reveal a link among Tcf7, Notch, and Tbx21 in NKp46(+) ILC3 development.


Subject(s)
Intestines/immunology , Killer Cells, Natural/metabolism , T Cell Transcription Factor 1/metabolism , T-Lymphocytes/metabolism , Animals , Antigens, Ly/metabolism , Cell Differentiation/immunology , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , GATA3 Transcription Factor/metabolism , Hepatocyte Nuclear Factor 1-alpha , Inflammation/immunology , Inflammation/microbiology , Interleukin-13/biosynthesis , Interleukin-5/biosynthesis , Interleukins/biosynthesis , Intestines/microbiology , Lymphocyte Activation , Mice , Mice, Knockout , Mucous Membrane/cytology , Mucous Membrane/immunology , Natural Cytotoxicity Triggering Receptor 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptor, Notch2/metabolism , T Cell Transcription Factor 1/genetics , T-Box Domain Proteins/biosynthesis , T-Box Domain Proteins/immunology , Interleukin-22
19.
Cytokine ; 70(1): 1-10, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24972988

ABSTRACT

The body's surface provides a critical barrier shielding us from various mechanical and pathogenic insults by virtue of the physical protection it provides and the presence of specialized populations of innate lymphoid cells (ILCs) that sense inflammatory signals induced by pathogens. This response plays a central role in the development and activation of early immune responses. While ILCs depend on common γ-chain cytokine signaling for their development, an essential component of the armory of these cells is their capacity to produce defensive cytokines when activated by viruses, microbes and other parasites. In this review, we describe the multiple intrinsic and extrinsic pathways that comprise the cytokine circuitry regulating the development and function of ILC necessary for protective immunity.


Subject(s)
Cytokines/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Signal Transduction/immunology , Adaptive Immunity/immunology , Cytokines/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Lymphocytes/metabolism , Models, Immunological
20.
Methods Mol Biol ; 2806: 197-207, 2024.
Article in English | MEDLINE | ID: mdl-38676804

ABSTRACT

Colorectal cancer (CRC) is a significant global health concern, requiring effective preclinical models for studying its development and testing therapies. Mouse models have been used, including spontaneous tumors, carcinogen exposure, and tumor cell implantation as xenografts or at orthotopic sites. Here, we describe an orthotopic preclinical model of CRC, which provides a valuable tool for studying tumor growth and the tumor microenvironment, offering a more accurate representation of human CRC compared to xenograft models.


Subject(s)
Colorectal Neoplasms , Disease Models, Animal , Animals , Colorectal Neoplasms/pathology , Mice , Humans , Cell Line, Tumor , Tumor Microenvironment , Allografts
SELECTION OF CITATIONS
SEARCH DETAIL