Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Molecules ; 28(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37110805

ABSTRACT

Many plant-derived flavonoids are known for their anti-neuroinflammatory and anti-neurodegenerative effects. The fruits and leaves of the black currant (BC, Ribes nigrum) contain these phytochemicals with therapeutic benefits. The current study presents a report on a standardized BC gemmotherapy extract (BC-GTE) that is prepared from fresh buds. It provides details about the phytoconstituent profile specific to the extract as well as the associated antioxidant and anti-neuroinflammatory properties. The reported BC-GTE was found to contain approximately 133 phytonutrients, making it unique in its composition. Furthermore, this is the first report to quantify the presence of significant flavonoids such as luteolin, quercetin, apigenin, and kaempferol. Drosophila melanogaster-based tests revealed no cytotoxic but nutritive effects. We also demonstrated that adult male Wistar rats, pretreated with the analyzed BC-GTE and assessed after lipopolysaccharide (LPS) injection, did not show any apparent increase in body size in the microglial cells located in the hippocampal CA1 region, while in control experiments, the activation of microglia was evident. Moreover, no elevated levels of serum-specific TNF-α were observed under the LPS-induced neuroinflammatory condition. The analyzed BC-GTE's specific flavonoid content, along with the experimental data based on an LPS-induced inflammatory model, suggest that it possesses anti-neuroinflammatory/neuroprotective properties. This indicates that the studied BC-GTE has the potential to be used as a GTE-based complementary therapeutic approach.


Subject(s)
Neuroprotective Agents , Ribes , Rats , Animals , Flavonoids/pharmacology , Ribes/chemistry , Microglia , Neuroprotective Agents/pharmacology , Tumor Necrosis Factor-alpha , Pilot Projects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Drosophila melanogaster , Lipopolysaccharides , Rats, Wistar , Ethanol , Hippocampus
2.
Antibiotics (Basel) ; 13(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38391567

ABSTRACT

Nowadays, unprecedented health challenges are urging novel solutions to address antimicrobial resistance as multidrug-resistant strains of bacteria, yeasts and moulds are emerging. Such microorganisms can cause food and feed spoilage, food poisoning and even more severe diseases, resulting in human death. In order to overcome this phenomenon, it is essential to identify novel antimicrobials that are naturally occurring, biologically effective and increasingly safe for human use. The development of gemmotherapy extracts (GTEs) using plant parts such as buds and young shoots has emerged as a novel approach to treat/prevent human conditions due to their associated antidiabetic, anti-inflammatory and/or antimicrobial properties that all require careful evaluations. Seven GTEs obtained from plant species like the olive (Olea europaea L.), almond (Prunus amygdalus L.), black mulberry (Morus nigra L.), walnut (Juglans regia L.), blackberry (Rubus fruticosus L.), blackcurrant (Ribes nigrum L.) and bilberry (Vaccinium myrtillus L.) were tested for their antimicrobial efficiency via agar diffusion and microbroth dilution methods. The antimicrobial activity was assessed for eight bacterial (Bacillus cereus, Staphylococcus aureus, Salmonella enterica subsp. enterica, Proteus vulgaris, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Listeria monocytogenes), five moulds (Aspergillus flavus, Aspergillus niger, Aspergillus ochraceus, Penicillium citrinum, Penicillium expansum) and one yeast strain (Saccharomyces cerevisiae). The agar diffusion method revealed the blackberry GTE as the most effective since it inhibited the growth of three bacterial, four moulds and one yeast species, having considered the total number of affected microorganism species. Next to the blackberry, the olive GTE appeared to be the second most efficient, suppressing five bacterial strains but no moulds or yeasts. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were then determined for each GTE and the microorganisms tested. Noticeably, the olive GTE appeared to feature the strongest bacteriostatic and bactericidal outcome, displaying specificity for S. aureus, E. faecalis and L. monocytogenes. The other GTEs, such as blueberry, walnut, black mulberry and almond (the list indicates relative strength), were more effective at suppressing microbial growth than inducing microbial death. However, some species specificities were also evident, while the blackcurrant GTE had no significant antimicrobial activity. Having seen the antimicrobial properties of the analysed GTEs, especially the olive and black mulberry GTEs, these could be envisioned as potential antimicrobials that might enhance antibiotic therapies efficiency, while the blackberry GTE would act as an antifungal agent. Some of the GTE mixtures analysed have shown interesting antimicrobial synergies, and all the antimicrobial effects observed argue for extending these studies to include pathological microorganisms.

3.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37760021

ABSTRACT

The extracts of whole plants or specific organs from different plant species are gaining increasing attention for their phytotherapy applications. Accordingly, we prepared standardized gemmotherapy extracts (GTEs) from young shoots/buds of olive (Olea europaea), sweet almond (Prunus amygdalus), and black mulberry (Morus nigra), and analyzed the corresponding phytonutrient profiles. We identified 42, 103, and 109 phytonutrients in the olive, almond, and black mulberry GTEs, respectively, containing amino acids, vitamins, polyphenols, flavonoids, coumarins, alkaloids, iridoids, carboxylic acids, lignans, terpenoids, and others. In order to assess the physiological effects generated by the GTEs, we developed a translational nutrition model based on Drosophila melanogaster and Cyprinus carpio. The results indicate that GTEs could influence, to a variable extent, viability and ATP synthesis, even though both are dependent on the specific carbohydrate load of the applied diet and the amino acid and polyphenol pools provided by the GTEs. It seems, therefore, likely that the complex chemical composition of the GTEs offers nutritional properties that cannot be separated from the health-promoting mechanisms that ultimately increase viability and survival. Such an approach sets the paves the way for the nutritional genomic descriptions regarding GTE-associated health-promoting effects.

4.
Antioxidants (Basel) ; 9(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143302

ABSTRACT

Bilberries (Vaccinium myrtillus L.) have been reported to hold a plentitude of health-promoting properties beyond basic nutrition, mainly attributed to their anthocyanin content and antioxidant activity. In this article, we built the phytochemical profile of three wild bilberry fruit extract formulations (aqueous, methanolic, and hydro-methanolic) using UHPLC-ESI-MS/MS putative analysis, identifying 88 individual phytochemicals, mainly flavonoids (total content 8.41 ± 0.11 mg QE/g dw), free amino acids, polyphenols (total content 21.68 ± 0.19 mg GAE/g dw), carboxylic acids, and vitamins. Furthermore, the antioxidant activity of the extract was assessed, reaching 78.03 ± 0.16% DPPH free radical scavenging activity, comparable to literature values determined for bilberry extracts of other origin. Due to the increased prevalence of metabolic syndrome and based on the reviewed benefits of bilberries, we tested the most potent formulation of our bilberry extracts in this biological context. The in vivo rescue effect of a bilberry extract supplemented diet on Drosophila melanogaster was assessed by monitoring biochemical and genomic markers. Hemolymph trehalose levels were halved upon addition of 3% hydro-methanolic bilberry extract to a high-sugar (1.5 M sucrose) diet, as compared to the non-supplemented high-sugar diet. Noteworthy, the rescue seen for flies kept on the bilberry extract supplemented high-sugar diet appeared to parallel the trehalose levels observed in the case of the control diet (50 mM sucrose) flies. Moreover, next to the trehalose-lowering type of in vivo effects, other gene expression related rescues were also detected for genes such as InR, Akh, AstA, AstC, Irk, Npc2g, and CCHa2 upon supplementation of the high-sugar diet with our hydro-methanolic bilberry fruit extract. Our findings suggest that such a bilberry fruit extract could generate physiological and genomic type of compensatory mechanisms so that further translational approaches would advance the understanding of some human specific pathological conditions.

SELECTION OF CITATIONS
SEARCH DETAIL