Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(23): 16664-16673, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38808589

ABSTRACT

For the conversion of fructose/methylglucoside (MG) into both methyl formate (MF) and methyl levulinate (MLev), the C-source of formate [HCOO]- remains unclear at the molecular level. Herein, reaction mechanisms catalyzed by [CH3OH2]+ in a methanol solution were theoretically investigated at the PBE0/6-311++G(d,p) level. For the conversion of fructose into MF and MLev, the formate [HCOO]- comes from the C1-atom of fructose, in which the rate-determining step lies in the reaction of 5-hydroxymethylfurfural (HMF) with CH3OH to yield MF and MLev. The reaction of fructose with CH3OH kinetically tends to generate HMF intermediates rather than yield (MF + MLev). When MG is dissolved in a methanol solution, its O2, O3, and O4 atoms are closer to the first layer of the solvent than O1, O5, and O6 atoms. For the dehydration of MG with methanol into MF and MLev, the formate [HCOO]- stems from the dominant C1- and secondary C3-atoms of MG. Kinetically, MG is ready to yield (MF + MLev), whereas fructose can induce the reaction to remain at the HMF intermediate, inhibiting the further conversion of HMF with CH3OH into MF and MLev. If MG isomerizes into fructose, the reaction will be more preferable for yielding HMF rather than (MF + MLev).

2.
Phys Chem Chem Phys ; 26(20): 14613-14623, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739028

ABSTRACT

A Ru-containing complex shows good catalytic performance toward the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) with the assistance of organic base ligands (OBLs) and CO2. Herein, we report the competitive mechanisms for the hydrogenation of LA to GVL, 4-oxopentanal (OT), and 2-methyltetrahydro-2,5-furandiol (MFD) with HCOOH or H2 as the H source catalyzed by RuCl3 in aqueous solution at the M06/def2-TZVP, 6-311++G(d,p) theoretical level. Kinetically, the hydrodehydration of LA to GVL is predominant, with OT and MFD as side products. With HCOOH as the H source, initially, the OBL (triethylamine, pyridine, or triphenylphosphine) is responsible for capturing H+ from HCOOH, leading to HCOO- and [HL]+. Next, the Ru3+ site is in charge of sieving H- from HCOO-, yielding [RuH]2+ hydride and CO2. Alternatively, with H2 as the H source, the OBL stimulates the heterolysis of H-H bond with the aid of Ru3+ active species, producing [RuH]2+ and [HL]+. Toward the [RuH]2+ formation, H2 as the H source exhibits higher activity than HCOOH as the H source in the presence of an OBL. Thereafter, H- in [RuH]2+ gets transferred to the unsaturated C site of ketone carbonyl in LA. Afterwards, the Ru3+ active species is capable of cleaving the C-OH bond in 4-hydroxyvaleric acid, yielding [RuOH]2+ hydroxide and GVL. Subsequently, CO2 promotes Ru-OH bond cleavage in [RuOH]2+, forming HCO3- and regenerating the Ru3+-active species owing to its Lewis acidity. Lastly, between the resultant HCO3- and [HL]+, a neutralization reaction occurs, generating H2O, CO2, and OBLs. Thus, the present study provides insights into the promotive roles of additives such as CO2 and OBLs in Ru-catalyzed hydrogenation.

3.
Phys Chem Chem Phys ; 25(12): 8507-8514, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36883477

ABSTRACT

In a solution of sorbitol (SBT) and Ga(OTf)3 compounds, the coordination of sorbitol (SBT) to [Ga(OTf)n]3-n (n = 0-3) has been investigated, using both ESI-MS spectra and density functional theory (DFT) calculations at the M06/6-311++g(d,p), aug-cc-pvtz level using a polarized continuum model (PCM-SMD). In sorbitol solution, the most stable conformer of sorbitol includes three intramolecular H-bonds, i.e., O2H⋯O4, O4H⋯O6, and O5H⋯O3. Through ESI-MS spectra, in a tetrahydrofuran solution of both SBT and Ga(OTf)3 compounds, five main species are observed, i.e., [Ga(SBT)]3+, [Ga(OTf)]2+, [Ga(SBT)2]3+, [Ga(OTf)(SBT)]2+, and [Ga(OTf)(SBT)2]2+. Through DFT calculations, in a solution of sorbitol (SBT) and Ga(OTf)3 compounds, the Ga3+ cation tends to form five six-coordination complexes, i.e., [Ga(η2O,O-OTf)3], [Ga(η3O2-O4-SBT)2]3+, [(η2O,O-OTf)Ga(η4O2-O5-SBT)]2+, [(η1O-OTf)(η2O2,O4-SBT)Ga(η3O3-O5-SBT)]2+, and [(η1O-OTf)(η2O,O-OTf)Ga(η3O3-O5-SBT)]+, which are in good agreement with the experimental observation of the ESI-MS spectra. For both [Ga(OTf)n]3-n (n = 1-3) and [Ga(SBT)m]3+ (m = 1, 2) complexes, the negative charge transfer from ligands to the Ga3+-center plays an important role in their stability, because of the strong polarization of the Ga3+ cation. For [Ga(OTf)n(SBT)m]3-n (n = 1, 2; m = 1, 2) complexes, the negative charge transfer from ligands to the Ga3+-center plays an essential role in their stability, accompanied by an electrostatic interaction between the Ga3+-center and ligands and/or spatial inclusion of ligands toward the Ga3+-center.

4.
RSC Adv ; 11(63): 39888-39895, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-35494149

ABSTRACT

Vanadium-containing catalysts exhibit good catalytic activity toward the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformyfuran (DFF). The aerobic oxidation mechanism of HMF to DFF catalyzed by VO2 + with counterpart anion in N,N-dimethylacetamide (DMA) solution have been theoretically investigated. In DMA solution, the stable VO2 +-containing complex is the four-coordinated [V(O)2(DMA)2]+ species. For the gross reaction of 2HMF + O2 → 2DFF + 2H2O, there are three main reaction stages, i.e., the oxidation of the first HMF to DFF with the reduction of [V(O)2(DMA)2]+ to [V(OH)2(DMA)]+, the aerobic oxidation of [V(OH)2(DMA)]+ to the peroxide [V(O)3(DMA)]+, and the oxidation of the second HMF to DFF with the reduction of [V(O)3(DMA)]+ to [V(O)2(DMA)2]+. The rate-determining reaction step is associated with the C-H bond cleavage of -CH2 group of the first HMF molecule. The peroxide [V(O)3(DMA)]+ species exhibits better oxidative activity than the initial [V(O)2(DMA)2]+ species, which originates from its narrower HOMO-LUMO gap. The counteranion Cl- exerts promotive effect on the aerobic oxidation of HMF to DFF catalyzed by [V(O)2(DMA)2]+ species.

SELECTION OF CITATIONS
SEARCH DETAIL