Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Angiogenesis ; 19(4): 463-86, 2016 10.
Article in English | MEDLINE | ID: mdl-27338829

ABSTRACT

Desmogleins (DSG) are a family of cadherin adhesion proteins that were first identified in desmosomes and provide cardiomyocytes and epithelial cells with the junctional stability to tolerate mechanical stress. However, one member of this family, DSG2, is emerging as a protein with additional biological functions on a broader range of cells. Here we reveal that DSG2 is expressed by non-desmosome-forming human endothelial progenitor cells as well as their mature counterparts [endothelial cells (ECs)] in human tissue from healthy individuals and cancer patients. Analysis of normal blood and bone marrow showed that DSG2 is also expressed by CD34(+)CD45(dim) hematopoietic progenitor cells. An inability to detect other desmosomal components, i.e., DSG1, DSG3 and desmocollin (DSC)2/3, on these cells supports a solitary role for DSG2 outside of desmosomes. Functionally, we show that CD34(+)CD45(dim)DSG2(+) progenitor cells are multi-potent and pro-angiogenic in vitro. Using a 'knockout-first' approach, we generated a Dsg2 loss-of-function strain of mice (Dsg2 (lo/lo)) and observed that, in response to reduced levels of Dsg2: (i) CD31(+) ECs in the pancreas are hypertrophic and exhibit altered morphology, (ii) bone marrow-derived endothelial colony formation is impaired, (iii) ex vivo vascular sprouting from aortic rings is reduced, and (iv) vessel formation in vitro and in vivo is attenuated. Finally, knockdown of DSG2 in a human bone marrow EC line reveals a reduction in an in vitro angiogenesis assay as well as relocalisation of actin and VE-cadherin away from the cell junctions, reduced cell-cell adhesion and increased invasive properties by these cells. In summary, we have identified DSG2 expression in distinct progenitor cell subpopulations and show that, independent from its classical function as a component of desmosomes, this cadherin also plays a critical role in the vasculature.


Subject(s)
Desmoglein 2/metabolism , Endothelial Cells/metabolism , Neovascularization, Physiologic , Animals , Cell Differentiation , Cells, Cultured , Desmoglein 2/deficiency , Desmoglein 2/genetics , Endothelial Cells/cytology , Female , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Neovascularization, Physiologic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics
2.
Commun Biol ; 4(1): 1111, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552183

ABSTRACT

The growth of solid tumours relies on an ever-increasing supply of oxygen and nutrients that are delivered via vascular networks. Tumour vasculature includes endothelial cell lined angiogenesis and the less common cancer cell lined vasculogenic mimicry (VM). To study and compare the development of vascular networks formed during angiogenesis and VM (represented here by breast cancer and pancreatic cancer cell lines) a number of in vitro assays were utilised. From live cell imaging, we performed a large-scale automated extraction of network parameters and identified properties not previously reported. We show that for both angiogenesis and VM, the characteristic network path length reduces over time; however, only endothelial cells increase network clustering coefficients thus maintaining small-world network properties as they develop. When compared to angiogenesis, the VM network efficiency is improved by decreasing the number of edges and vertices, and also by increasing edge length. Furthermore, our results demonstrate that angiogenic and VM networks appear to display similar properties to road traffic networks and are also subject to the well-known Braess paradox. This quantitative measurement framework opens up new avenues to potentially evaluate the impact of anti-cancer drugs and anti-vascular therapies.


Subject(s)
Endothelial Cells/pathology , Neovascularization, Pathologic/physiopathology , Antineoplastic Agents , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL