Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
PLoS Biol ; 22(1): e3002445, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163325

ABSTRACT

Serotonin (5-HT) deficiency is a core biological pathology underlying depression and other psychiatric disorders whose key symptoms include decreased motivation. However, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system in macaque monkeys and quantified the effects on motivation for goal-directed actions in terms of incentives and costs. Reversible inhibition of 5-HT synthesis increased errors and reaction times on goal-directed tasks, indicating reduced motivation. Analysis found incentive-dependent and cost-dependent components of this reduction. To identify the receptor subtypes that mediate cost and incentive, we systemically administered antagonists specific to 4 major 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4. Positron emission tomography (PET) visualized the unique distribution of each subtype in limbic brain regions and determined the systemic dosage for antagonists that would achieve approximately 30% occupancy. Only blockade of 5-HT1A decreased motivation through changes in both expected cost and incentive; sensitivity to future workload and time delay to reward increased (cost) and reward value decreased (incentive). Blocking the 5-HT1B receptor also reduced motivation through decreased incentive, although it did not affect expected cost. These results suggest that 5-HT deficiency disrupts 2 processes, the subjective valuation of costs and rewards, via 5-HT1A and 5-HT1B receptors, thus leading to reduced motivation.


Subject(s)
Serotonin Antagonists , Serotonin , Brain/metabolism , Carrier Proteins/metabolism , Receptor, Serotonin, 5-HT1B , Serotonin Antagonists/pharmacology , Macaca , Animals
2.
EMBO J ; 40(22): e107757, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34636430

ABSTRACT

Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fluorescent TMP analogs enabled PET and intravital microscopy, respectively, of neuronal ecDHFR expression in mice. This technique can be used to the visualize neuronal circuit activity elicited by chemogenetic manipulation in the mouse hippocampus. Notably, ecDHFR-PET allows mapping of neuronal projections in non-human primate brains, demonstrating the applicability of ecDHFR-based tracking technologies for network monitoring. Finally, we demonstrate the utility of TMP analogs for PET studies of turnover and self-assembly of proteins tagged with ecDHFR mutants. These results establish opportunities for a broad spectrum of previously unattainable PET analyses of mammalian brain circuits at the molecular level.


Subject(s)
Brain/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Animals , Brain/cytology , Callithrix , Carbon Radioisotopes/chemistry , Fluorine Radioisotopes/chemistry , Genes, Reporter , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Molecular Imaging/methods , Nerve Net/diagnostic imaging , Proteins/analysis , Proteins/metabolism , Radiopharmaceuticals/chemical synthesis , Tetrahydrofolate Dehydrogenase/metabolism , Trimethoprim/analogs & derivatives , Trimethoprim/chemistry
3.
J Neurosci ; 43(39): 6619-6627, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37620158

ABSTRACT

Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.


Subject(s)
Ion Channels , Primates , Animals , Male , Reproducibility of Results , Multimodal Imaging , Macaca
4.
PLoS Biol ; 19(7): e3001055, 2021 07.
Article in English | MEDLINE | ID: mdl-34197448

ABSTRACT

It has been widely accepted that dopamine (DA) plays a major role in motivation, yet the specific contribution of DA signaling at D1-like receptor (D1R) and D2-like receptor (D2R) to cost-benefit trade-off remains unclear. Here, by combining pharmacological manipulation of DA receptors (DARs) and positron emission tomography (PET) imaging, we assessed the relationship between the degree of D1R/D2R blockade and changes in benefit- and cost-based motivation for goal-directed behavior of macaque monkeys. We found that the degree of blockade of either D1R or D2R was associated with a reduction of the positive impact of reward amount and increasing delay discounting. Workload discounting was selectively increased by D2R antagonism. In addition, blocking both D1R and D2R had a synergistic effect on delay discounting but an antagonist effect on workload discounting. These results provide fundamental insight into the distinct mechanisms of DA action in the regulation of the benefit- and cost-based motivation, which have important implications for motivational alterations in both neurological and psychiatric disorders.


Subject(s)
Cost-Benefit Analysis , Dopamine/metabolism , Macaca mulatta/physiology , Motivation , Receptors, Dopamine D1/physiology , Receptors, Dopamine D2/physiology , Animals , Delay Discounting , Dopamine Antagonists/pharmacology , Macaca fuscata , Male , Positron-Emission Tomography , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects , Workload
5.
J Neurosci ; 42(12): 2552-2561, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35110390

ABSTRACT

The chemogenetic technology referred to as designer receptors exclusively activated by designer drugs (DREADDs) offers reversible means to control neuronal activity for investigating its functional correlation with behavioral action. Deschloroclozapine (DCZ), a recently developed highly potent and selective DREADD actuator, displays a capacity to expand the utility of DREADDs for chronic manipulation without side effects in nonhuman primates, which has not yet been validated. Here we investigated the pharmacokinetics and behavioral effects of orally administered DCZ in female and male macaque monkeys. Pharmacokinetic analysis and PET occupancy examination demonstrated that oral administration of DCZ yielded slower and prolonged kinetics, and that its bioavailability was 10%-20% of that in the case of systemic injection. Oral DCZ (300-1000 µg/kg) induced significant working memory impairments for at least 4 h in monkeys with hM4Di expressed in the dorsolateral prefrontal cortex (Brodmann's area 46). Repeated daily oral doses of DCZ consistently caused similar impairments over two weeks without discernible desensitization. Our results indicate that orally delivered DCZ affords a less invasive strategy for chronic but reversible chemogenetic manipulation of neuronal activity in nonhuman primates, and this has potential for clinical application.SIGNIFICANCE STATEMENT The use of designer receptors exclusively activated by designer drugs (DREADDs) for chronic manipulation of neuronal activity for days to weeks may be feasible for investigating brain functions and behavior on a long time-scale, and thereby for developing therapeutics for brain disorders, such as epilepsy. Here we performed pharmacokinetics and in vivo occupancy study of orally administered deschloroclozapine to determine a dose range suitable for DREADDs studies. In monkeys expressing hM4Di in the prefrontal cortex, single and repeated daily doses significantly induced working-memory impairments for hours and over two weeks, respectively, without discernible desensitization. These results indicate that orally delivered deschloroclozapine produces long-term stable chemogenetic effects, and holds great promise for the translational use of DREADDs technology.


Subject(s)
Clozapine , Designer Drugs , Animals , Behavior Control , Clozapine/pharmacology , Designer Drugs/pharmacology , Female , Macaca mulatta , Male , Neurons
6.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35794012

ABSTRACT

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Subject(s)
Caudate Nucleus , Motivation , Animals , Caudate Nucleus/physiology , Goals , Humans , Male , Prefrontal Cortex/physiology , Reward
7.
Neuroimage ; 273: 120096, 2023 06.
Article in English | MEDLINE | ID: mdl-37031828

ABSTRACT

A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had been used as subjects in experiments, it is essential to investigate various species of nonhuman primates in order to elucidate and interpret the diversity of neuroanatomy features among humans and nonhuman primates. To develop a research platform for this purpose, it is necessary to harmonize the scientific contributions of studies with the standards of animal ethics, animal welfare, and the conservation of brain information for long-term continuation of the field. In previous research, we first developed a gated data-repository of anatomical images obtained using 9.4-T ex vivo MRI of postmortem brain samples from 12 nonhuman primate species, and which are stored at the Japan Monkey Centre. In the present study, as a second phase, we released a collection of T2-weighted images and diffusion tensor images obtained in nine species: white-throated capuchin, Bolivian squirrel monkey, stump-tailed macaque, Tibet monkey, Sykes' monkey, Assamese macaque, pig-tailed macaque, crested macaque, and chimpanzee. Our image repository should facilitate scientific discoveries in the field of comparative neuroscience. This repository can also promote animal ethics and animal welfare in experiments with nonhuman primate models by optimizing methods for in vivo and ex vivo MRI scanning of brains and supporting veterinary neuroradiological education. In addition, the repository is expected to contribute to conservation, preserving information about the brains of various primates, including endangered species, in a permanent digital form.


Subject(s)
Magnetic Resonance Imaging , Primates , Animals , Humans , Japan , Primates/anatomy & histology , Brain/diagnostic imaging , Brain/anatomy & histology , Macaca , Magnetic Resonance Spectroscopy , Neuroimaging
8.
Bioorg Med Chem Lett ; 85: 129212, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36871703

ABSTRACT

Recently, retinoid actions on the central nervous system (CNS) have attracted considerable attention from the perspectives of brain disease diagnosis and drug development. Firstly, we successfully synthesized [11C]peretinoin esters (methyl, ethyl, and benzyl) using a Pd(0)-mediated rapid C-[11C]methylation of the corresponding stannyl precursors without geometrical isomerization in 82%, 66%, and 57% radiochemical yields (RCYs). Subsequent hydrolysis of the 11C-labeled ester produced [11C]peretinoin in 13 ± 8% RCY (n = 3). After pharmaceutical formulation, the resulting [11C]benzyl ester and [11C]peretinoin had high radiochemical purity (>99% each) and molar activities of 144 and 118 ± 49 GBq µmol-1 at total synthesis times of 31 min and 40 ± 3 min, respectively. Rat brain PET imaging for the [11C]ester revealed a unique time-radioactivity curve, suggesting the participation of the acid [11C]peretinoin for the brain permeability. However, the curve of the [11C]peretinoin rose steadily after a shorter time lag to reach 1.4 standardized uptake value (SUV) at 60 min. These various phenomena between the ester and acid became more pronounced in the monkey brain (SUV of > 3.0 at 90 min). With the opportunity to identify high brain uptake of [11C]peretinoin, we discovered CNS activities of a drug candidate called peretinoin, such as the induction of a stem-cell to neuronal cell differentiation and the suppression of neuronal damages.


Subject(s)
Antineoplastic Agents , Retinoids , Rats , Animals , Methylation , Retinoids/pharmacology , Antineoplastic Agents/pharmacology , Brain/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/pharmacology
9.
Eur J Nucl Med Mol Imaging ; 48(10): 3101-3112, 2021 09.
Article in English | MEDLINE | ID: mdl-33674894

ABSTRACT

PURPOSE: Phosphodiesterase (PDE) 7 is a potential therapeutic target for neurological and inflammatory diseases, although in vivo visualization of PDE7 has not been successful. In this study, we aimed to develop [11C]MTP38 as a novel positron emission tomography (PET) ligand for PDE7. METHODS: [11C]MTP38 was radiosynthesized by 11C-cyanation of a bromo precursor with [11C]HCN. PET scans of rat and rhesus monkey brains and in vitro autoradiography of brain sections derived from these species were conducted with [11C]MTP38. In monkeys, dynamic PET data were analyzed with an arterial input function to calculate the total distribution volume (VT). The non-displaceable binding potential (BPND) in the striatum was also determined by a reference tissue model with cerebellar reference. Finally, striatal occupancy of PDE7 by an inhibitor was calculated in monkeys according to changes in BPND. RESULTS: [11C]MTP38 was synthesized with radiochemical purity ≥99.4% and molar activity of 38.6 ± 12.6 GBq/µmol. Autoradiography revealed high radioactivity in the striatum and its reduction by non-radiolabeled ligands, in contrast with unaltered autoradiographic signals in other regions. In vivo PET after radioligand injection to rats and monkeys demonstrated that radioactivity was rapidly distributed to the brain and intensely accumulated in the striatum relative to the cerebellum. Correspondingly, estimated VT values in the monkey striatum and cerebellum were 3.59 and 2.69 mL/cm3, respectively. The cerebellar VT value was unchanged by pretreatment with unlabeled MTP38. Striatal BPND was reduced in a dose-dependent manner after pretreatment with MTP-X, a PDE7 inhibitor. Relationships between PDE7 occupancy by MTP-X and plasma MTP-X concentration could be described by Hill's sigmoidal function. CONCLUSION: We have provided the first successful preclinical demonstration of in vivo PDE7 imaging with a specific PET radioligand. [11C]MTP38 is a feasible radioligand for evaluating PDE7 in the brain and is currently being applied to a first-in-human PET study.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 7 , Positron-Emission Tomography , Animals , Brain/diagnostic imaging , Carbon Radioisotopes , Ligands , Rats , Tissue Distribution
10.
J Neurosci ; 39(10): 1793-1804, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30626695

ABSTRACT

Processing incentive and drive is essential for control of goal-directed behavior. The limbic part of the basal ganglia has been emphasized in these processes, yet the exact neuronal mechanism has remained elusive. In this study, we examined the neuronal activity of the ventral pallidum (VP) and its upstream area, the rostromedial caudate (rmCD), while two male macaque monkeys performed an instrumental lever release task in which a visual cue indicated the forthcoming reward size. We found that the activity of some neurons in VP and rmCD reflected the expected reward size transiently following the cue. Reward size coding appeared earlier and stronger in VP than in rmCD. We also found that the activity in these areas was modulated by the satiation level of monkeys, which also occurred more frequently in VP than in rmCD. The information regarding reward size and satiation level was independently signaled in the neuronal populations of these areas. The data thus highlighted the neuronal coding of key variables for goal-directed behavior in VP. Furthermore, pharmacological inactivation of VP induced more severe deficit of goal-directed behavior than inactivation of rmCD, which was indicated by abnormal error repetition and diminished satiation effect on the performance. These results suggest that VP encodes incentive value and internal drive and plays a pivotal role in the control of motivation to promote goal-directed behavior.SIGNIFICANCE STATEMENT The limbic part of the basal ganglia has been implicated in the motivational control of goal-directed action. Here, we investigated how the ventral pallidum (VP) and the rostromedial caudate (rmCD) encode incentive value and internal drive and control goal-directed behavior. Neuronal recording and subsequent pharmacological inactivation revealed that VP had stronger coding of reward size and satiation level than rmCD. Reward size and satiation level were independently encoded in the neuronal population of these areas. Furthermore, VP inactivation impaired goal-directed behavior more severely than rmCD inactivation. These results highlight the central role of VP in the motivational control of goal-directed action.


Subject(s)
Basal Forebrain/physiology , Goals , Motivation/physiology , Neurons/physiology , Psychomotor Performance/physiology , Reward , Animals , Caudate Nucleus/physiology , Macaca mulatta , Male , Satiety Response , Visual Perception/physiology
11.
Neuroimage ; 195: 243-251, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30953832

ABSTRACT

In autism spectrum disorder (ASD), disrupted functional and structural connectivity in the social brain has been suggested as the core biological mechanism underlying the social recognition deficits of this neurodevelopmental disorder. In this study, we aimed to identify genetic and neurostructural abnormalities at birth in a non-human primate model of ASD, the common marmoset with maternal exposure to valproic acid (VPA), which has been reported to display social recognition deficit in adulthood. Using a comprehensive gene expression analysis, we found that 20 genes were significantly downregulated in VPA-exposed neonates. Of these, Frizzled3 (FZD3) and PIK3CA were identified in an axon guidance signaling pathway. FZD3 is essential for the normal development of the anterior commissure (AC) and corpus callosum (CC); hence, we performed diffusion tensor magnetic resonance imaging with a 7-Tesla scanner to measure the midsagittal sizes of these structures. We found that the AC size in VPA-exposed neonates was significantly smaller than that in age-matched controls, while the CC size did not differ. These results suggest that downregulation of the genes related to axon guidance and decreased AC size in neonatal primates may be linked to social brain dysfunctions that can happen later in life.


Subject(s)
Anterior Commissure, Brain/pathology , Autism Spectrum Disorder/pathology , Axon Guidance/physiology , Animals , Animals, Newborn , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/metabolism , Axon Guidance/drug effects , Callithrix , Class I Phosphatidylinositol 3-Kinases/biosynthesis , Disease Models, Animal , Frizzled Receptors/biosynthesis , GABA Agents/toxicity , Transcriptome/drug effects , Valproic Acid/toxicity
12.
Mov Disord ; 34(2): 200-209, 2019 02.
Article in English | MEDLINE | ID: mdl-30161282

ABSTRACT

BACKGROUND: Parkinson's disease is caused by dopamine deficiency in the striatum, which is a result of loss of dopamine neurons from the substantia nigra pars compacta. There is a consensus that a subpopulation of nigral dopamine neurons that expresses the calcium-binding protein calbindin is selectively invulnerable to parkinsonian insults. The objective of the present study was to test the hypothesis that dopamine neuron degeneration might be prevented by viral vector-mediated gene delivery of calbindin into the dopamine neurons that do not normally contain it. METHODS: A calbindin-expressing adenoviral vector was injected into the striatum of macaque monkeys to be conveyed to cell bodies of nigral dopamine neurons through retrograde axonal transport, or the calbindin-expressing lentiviral vector was injected into the nigra directly because of its predominant uptake from cell bodies and dendrites. The animals in which calbindin was successfully recruited into nigral dopamine neurons were administered systemically with MPTP. RESULTS: In the monkeys that had received unilateral vector injections, parkinsonian motor deficits, such as muscular rigidity and akinesia/bradykinesia, appeared predominantly in the limbs corresponding to the non-calbindin-recruited hemisphere after MPTP administration. Data obtained from tyrosine hydroxylase immunostaining and PET imaging for the dopamine transporter revealed that the nigrostriatal dopamine system was preserved better on the calbindin-recruited side. Conversely, on the non-calbindin-recruited control side, many more dopamine neurons expressed α-synuclein. CONCLUSIONS: The present results indicate that calbindin recruitment into nigral dopamine neurons protects against the onset of parkinsonian insults, thus providing a novel approach to PD prevention. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Calbindins/metabolism , Dopaminergic Neurons/metabolism , Nerve Degeneration/pathology , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Animals , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/physiology , Female , MPTP Poisoning/pathology , Macaca fascicularis , Male , Neostriatum/metabolism , Nerve Degeneration/metabolism , Parkinson Disease/pathology , Parkinson Disease/prevention & control , Parkinson Disease, Secondary , Substantia Nigra/pathology
13.
J Neurophysiol ; 120(2): 553-563, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29718803

ABSTRACT

Material perception is an essential part of our cognitive function that enables us to properly interact with our complex daily environment. One important aspect of material perception is its multimodal nature. When we see an object, we generally recognize its haptic properties as well as its visual properties. Consequently, one must examine behavior using real objects that are perceived both visually and haptically to fully understand the characteristics of material perception. As a first step, we examined whether there is any difference in the behavioral responses to different materials in monkeys trained to perform an object grasping task in which they saw and grasped rod-shaped real objects made of various materials. We found that the monkeys' behavior in the grasping task, which was measured based on the success rate and the pulling force, differed depending on the material category. Monkeys easily and correctly grasped objects of some materials, such as metal and glass, but failed to grasp objects of other materials. In particular, monkeys avoided grasping fur-covered objects. The differences in the behavioral responses to the material categories cannot be explained solely based on the degree of familiarity with the different materials. These results shed light on the organization of multimodal representation of materials, where their biological significance is an important factor. In addition, a monkey that avoided touching real fur-covered objects readily touched images of the same objects presented on a CRT display. This suggests that employing real objects is important when studying behaviors related to material perception. NEW & NOTEWORTHY We tested monkeys using an object-grasping task in which monkeys saw and grasped rod-shaped real objects made of various materials. We found that the monkeys' behavior differed dramatically across the material categories and that the behavioral differences could not be explained solely based on the degree of familiarity with the different materials. These results shed light on the organization of multimodal representation of materials, where the biological significance of materials is an important factor.


Subject(s)
Hand Strength , Psychomotor Performance , Touch Perception , Visual Perception , Animals , Macaca , Male , Physical Stimulation , Recognition, Psychology , Surface Properties , Touch
14.
J Neural Transm (Vienna) ; 125(3): 501-513, 2018 03.
Article in English | MEDLINE | ID: mdl-28324169

ABSTRACT

The thalamus provides a massive input to the striatum, but despite accumulating evidence, the functions of this system remain unclear. It is known, however, that the centromedian (CM) and parafascicular (Pf) nuclei of the thalamus can strongly influence particular striatal neuron subtypes, notably including the cholinergic interneurons of the striatum (CINs), key regulators of striatal function. Here, we highlight the thalamostriatal system through the CM-Pf to striatal CINs. We consider how, by virtue of the direct synaptic connections of the CM and PF, their neural activity contributes to the activity of CINs and striatal projection neurons (SPNs). CM-Pf neurons are strongly activated at sudden changes in behavioral context, such as switches in action-outcome contingency or sequence of behavioral requirements, suggesting that their activity may represent change of context operationalized as associability. Striatal CINs, on the other hand, acquire and loose responses to external events associated with particular contexts. In light of this physiological evidence, we propose a hypothesis of the CM-Pf-CINs system, suggesting that it augments associative learning by generating an associability signal and promotes reinforcement learning guided by reward prediction error signals from dopamine-containing neurons. We discuss neuronal circuit and synaptic organizations based on in vivo/in vitro studies that we suppose to underlie our hypothesis. Possible implications of CM-Pf-CINs dysfunction (or degeneration) in brain diseases are also discussed by focusing on Parkinson's disease.


Subject(s)
Association Learning/physiology , Cholinergic Neurons/physiology , Corpus Striatum/physiology , Interneurons/physiology , Thalamic Nuclei/physiology , Animals , Neural Pathways/physiology , Primates
15.
J Neurosci ; 36(45): 11544-11558, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27911758

ABSTRACT

Chemogenetic manipulation of neuronal activities has been enabled by a designer receptor (designer receptor exclusively activated by designer drugs, DREADD) that is activated exclusively by clozapine-N-oxide (CNO). Here, we applied CNO as a functional reporter probe to positron emission tomography (PET) of DREADD in living brains. Mutant human M4 DREADD (hM4Di) expressed in transgenic (Tg) mouse neurons was visualized by PET with microdose [11C]CNO. Deactivation of DREADD-expressing neurons in these mice by nonradioactive CNO at a pharmacological dose could also be captured by arterial spin labeling MRI (ASL-MRI). Neural progenitors derived from hM4Di Tg-induced pluripotent stem cells were then implanted into WT mouse brains and neuronal differentiation of the grafts could be imaged by [11C]CNO-PET. Finally, ASL-MRI captured chemogenetic functional manipulation of the graft neurons. Our data provide the first demonstration of multimodal molecular/functional imaging of cells expressing a functional gene reporter in the brain, which would be translatable to humans for therapeutic gene transfers and cell replacements. SIGNIFICANCE STATEMENT: The present work provides the first successful demonstration of in vivo positron emission tomographic (PET) visualization of a chemogenetic designer receptor (designer receptor exclusively activated by designer drugs, DREADD) expressed in living brains. This technology has been applied to longitudinal PET reporter imaging of neuronal grafts differentiated from induced pluripotent stem cells. Differentiated from currently used reporter genes for neuroimaging, DREADD has also been available for functional manipulation of target cells, which could be visualized by functional magnetic resonance imaging (fMRI) in a real-time manner. Multimodal imaging with PET/fMRI enables the visualization of the differentiation of iPSC-derived neural progenitors into mature neurons and DREADD-mediated functional manipulation along the time course of the graft and is accordingly capable of fortifying the utility of stem cells in cell replacement therapies.


Subject(s)
Brain/cytology , Genes, Reporter , Induced Pluripotent Stem Cells/cytology , Multimodal Imaging/methods , Neural Stem Cells/transplantation , Neurons/cytology , Neurons/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/transplantation , Mice , Mice, Transgenic , Neural Stem Cells/cytology , Positron-Emission Tomography/methods , Reproducibility of Results , Sensitivity and Specificity , Stem Cell Transplantation/methods
16.
J Pharmacol Exp Ther ; 357(3): 495-508, 2016 06.
Article in English | MEDLINE | ID: mdl-27029585

ABSTRACT

A novel pyridopyrimidin-4-one derivative, N-tert-butyl-2-[2-(3-methoxyphenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]acetamide (TASP0434299), was characterized as a radioligand candidate for arginine vasopressin 1B (V1B) receptor. TASP0434299 exhibited high binding affinities for human and rat V1B receptors with IC50 values of 0.526 and 0.641 nM, respectively, and potent antagonistic activity at the human V1B receptor with an IC50 value of 0.639 nM without apparent binding affinities for other molecules at 1 µM. [(3)H]TASP0434299 bound to membranes expressing the human V1B receptor as well as those prepared from the rat anterior pituitary in a saturable manner. The binding of [(3)H]TASP0434299 to the membranes was dose-dependently displaced by several ligands for the V1B receptor. In addition, the intravenous administration of [(3)H]TASP0434299 to rats produced a saturable radioactive accumulation in the anterior pituitary where the V1B receptor is enriched, and it was dose-dependently blocked by the oral administration of 2-[2-(3-chloro-4-fluorophenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]-N-isopropylacetamide hydrochloride, a V1B receptor antagonist, indicating that [(3)H]TASP0434299 can be used as an in vivo radiotracer to measure the occupancy of the V1B receptor. Finally, the intravenous administration of [(11)C]TASP0434299 provided positron emission tomographic images of the V1B receptor in the pituitary in an anesthetized monkey, and the signal was blocked by pretreatment with an excess of unlabeled TASP0434299. These results indicate that radiolabeled TASP0434299 is the first radioligand to be capable of quantifying the V1B receptor selectively in both in vitro and in vivo studies and will provide a clinical biomarker for determining the occupancy of the V1B receptor during drug development or for monitoring the levels of the V1B receptor in diseased conditions.


Subject(s)
Pyridines/metabolism , Pyrimidines/metabolism , Pyrimidinones/metabolism , Receptors, Vasopressin/metabolism , Animals , Binding, Competitive , Biological Transport , Carbon Radioisotopes , HEK293 Cells , Humans , Macaca mulatta , Male , Pituitary Gland/metabolism , Positron-Emission Tomography , Protein Binding , Radioactive Tracers , Radioligand Assay , Rats , Rats, Sprague-Dawley
17.
Brain Nerve ; 76(1): 73-79, 2024 Jan.
Article in Japanese | MEDLINE | ID: mdl-38191143

ABSTRACT

In recent years, the development of an on-demand treatment for epilepsy has been promoted using chemogenetics, by which neural activity of a target neuronal population is manipulated by systemic drug delivery. This paper outlines the mechanism of chemogenetic manipulation of neural activity, describes recent studies that have confirmed the efficacy of this technique in macaque monkeys, and discusses future developments toward clinical application of this technique.


Subject(s)
Epilepsy , Animals , Epilepsy/drug therapy , Macaca
18.
Sci Rep ; 14(1): 19619, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179718

ABSTRACT

Temporal discounting, in which the recipient of a reward perceives the value of that reward to decrease with delay in its receipt, is associated with impulsivity and psychiatric disorders such as depression. Here, we investigate the role of the serotonin 5-HT4 receptor (5-HT4R) in modulating temporal discounting in the macaque dorsal caudate nucleus (dCDh), the neurons of which have been shown to represent temporally discounted value. We first mapped the 5-HT4R distribution in macaque brains using positron emission tomography (PET) imaging and confirmed dense expression of 5-HT4R in the dCDh. We then examined the effects of a specific 5-HT4R antagonist infused into the dCDh. Blockade of 5-HT4R significantly increased error rates in a goal-directed delayed reward task, indicating an increase in the rate of temporal discounting. This increase was specific to the 5-HT4R blockade because saline controls showed no such effect. The results demonstrate that 5-HT4Rs in the dCDh are involved in reward-evaluation processes, particularly in the context of delay discounting, and suggest that serotonergic transmission via 5-HT4R may be a key component in the neural mechanisms underlying impulsive decisions, potentially contributing to depressive symptoms.


Subject(s)
Caudate Nucleus , Delay Discounting , Positron-Emission Tomography , Receptors, Serotonin, 5-HT4 , Reward , Serotonin 5-HT4 Receptor Antagonists , Animals , Caudate Nucleus/metabolism , Caudate Nucleus/drug effects , Caudate Nucleus/diagnostic imaging , Delay Discounting/drug effects , Male , Receptors, Serotonin, 5-HT4/metabolism , Serotonin 5-HT4 Receptor Antagonists/pharmacology , Impulsive Behavior/drug effects , Macaca , Behavior, Animal/drug effects , Macaca mulatta
19.
Commun Biol ; 7(1): 1080, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227400

ABSTRACT

Nonhuman primates (NHPs) exhibit complex and diverse behavior that typifies advanced cognitive function and social communication, but quantitative and systematical measure of this natural nonverbal processing has been a technical challenge. Specifically, a method is required to automatically segment time series of behavior into elemental motion motifs, much like finding meaningful words in character strings. Here, we propose a solution called SyntacticMotionParser (SMP), a general-purpose unsupervised behavior parsing algorithm using a nonparametric Bayesian model. Using three-dimensional posture-tracking data from NHPs, SMP automatically outputs an optimized sequence of latent motion motifs classified into the most likely number of states. When applied to behavioral datasets from common marmosets and rhesus monkeys, SMP outperformed conventional posture-clustering models and detected a set of behavioral ethograms from publicly available data. SMP also quantified and visualized the behavioral effects of chemogenetic neural manipulations. SMP thus has the potential to dramatically improve our understanding of natural NHP behavior in a variety of contexts.


Subject(s)
Bayes Theorem , Behavior, Animal , Macaca mulatta , Animals , Algorithms , Callithrix/physiology , Male
20.
Nat Commun ; 15(1): 5369, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987235

ABSTRACT

Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.


Subject(s)
Neurons , Temporal Lobe , Animals , Male , Temporal Lobe/physiology , Neurons/physiology , Macaca mulatta , Memory/physiology , Magnetic Resonance Imaging , Frontal Lobe/physiology , Memory, Short-Term/physiology , Brain Mapping , Prefrontal Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL