Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Am J Hum Genet ; 108(1): 8-15, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417889

ABSTRACT

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genomics/methods , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , Humans , Mutation/genetics , Phenotype
2.
J Med Genet ; 60(5): 511-522, 2023 05.
Article in English | MEDLINE | ID: mdl-36216457

ABSTRACT

BACKGROUND: Variants in PPP2R5D, affecting the regulatory B56δ subunit of protein phosphatase 2A (PP2A), have been identified in individuals with neurodevelopmental abnormalities. However, the molecular and clinical spectra remain incompletely understood. METHODS: Individuals with PPP2R5D variants were enrolled through Simons Variation in Individuals Project/Simons Searchlight. Data were collected from medical history interviews, medical record review, online validated instruments and neuroimaging review. Genetic variants were biochemically characterised. RESULTS: We studied 76 individuals with PPP2R5D variants, including 68 with pathogenic de novo variants, four with a variant of uncertain significance (VUS) and four siblings with a novel dominantly inherited pathogenic variant. Among 13 pathogenic variants, eight were novel and two (p.Glu198Lys and p.Glu200Lys) were highly recurrent. Functional analysis revealed impaired PP2A A/C-subunit binding, decreased short linear interaction motif-dependent substrate binding or both-with the most severe phenotypes associated with variants that completely retained one of these binding characteristics and lost the other-further supporting a dominant-negative disease mechanism. p.Glu198Lys showed the highest C-binding defect and a more severe clinical phenotype. The inherited p.Glu197Gly variant had a mild substrate binding defect, and three of four VUS had no biochemical impact. Common clinical phenotypes were language, intellectual or learning disabilities (80.6%), hypotonia (75.0%), macrocephaly (66.7%), seizures (45.8%) and autism spectrum disorder (26.4%). The mean composite Vineland score was 59.8, and most participants were in the 'moderate to low' and 'low' adaptive levels in all domains. CONCLUSION: Our study delineates the most common features of PPP2R5D-related neurodevelopmental disorders, expands the clinical and molecular spectrum and identifies genotype-phenotype correlations.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Autism Spectrum Disorder/genetics , Genotype , Intellectual Disability/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Protein Phosphatase 2/genetics
3.
Am J Hum Genet ; 107(3): 544-554, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32730804

ABSTRACT

RNA polymerase II interacts with various other complexes and factors to ensure correct initiation, elongation, and termination of mRNA transcription. One of these proteins is SR-related CTD-associated factor 4 (SCAF4), which is important for correct usage of polyA sites for mRNA termination. Using exome sequencing and international matchmaking, we identified nine likely pathogenic germline variants in SCAF4 including two splice-site and seven truncating variants, all residing in the N-terminal two thirds of the protein. Eight of these variants occurred de novo, and one was inherited. Affected individuals demonstrated a variable neurodevelopmental disorder characterized by mild intellectual disability, seizures, behavioral abnormalities, and various skeletal and structural anomalies. Paired-end RNA sequencing on blood lymphocytes of SCAF4-deficient individuals revealed a broad deregulation of more than 9,000 genes and significant differential splicing of more than 2,900 genes, indicating an important role of SCAF4 in mRNA processing. Knockdown of the SCAF4 ortholog CG4266 in the model organism Drosophila melanogaster resulted in impaired locomotor function, learning, and short-term memory. Furthermore, we observed an increased number of active zones in larval neuromuscular junctions, representing large glutamatergic synapses. These observations indicate a role of CG4266 in nervous system development and function and support the implication of SCAF4 in neurodevelopmental phenotypes. In summary, our data show that heterozygous, likely gene-disrupting variants in SCAF4 are causative for a variable neurodevelopmental disorder associated with impaired mRNA processing.


Subject(s)
Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Seizures/genetics , Serine-Arginine Splicing Factors/genetics , Animals , Child , Drosophila melanogaster/genetics , Female , Gene Knockdown Techniques , Genetic Variation/genetics , Heterozygote , Humans , Intellectual Disability/physiopathology , Locomotion/genetics , Male , Mutation/genetics , Neurodevelopmental Disorders/physiopathology , RNA Polymerase II/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , Seizures/physiopathology , Exome Sequencing
4.
Genet Med ; 25(8): 100885, 2023 08.
Article in English | MEDLINE | ID: mdl-37165955

ABSTRACT

PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.


Subject(s)
Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Epilepsy/genetics , Epilepsy/pathology , Genetic Association Studies , Intellectual Disability/genetics , Phenotype , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/genetics , Tumor Suppressor Proteins/genetics
5.
Brain ; 145(3): 925-938, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35355055

ABSTRACT

Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Hemimegalencephaly , Malformations of Cortical Development , Brain/pathology , Child , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Drug Resistant Epilepsy/metabolism , Epilepsy/genetics , Hemimegalencephaly/genetics , Hemimegalencephaly/metabolism , Hemimegalencephaly/pathology , Humans , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/genetics , Mutation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
6.
Am J Hum Genet ; 105(4): 844-853, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31585108

ABSTRACT

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.


Subject(s)
Alleles , Classical Lissencephalies and Subcortical Band Heterotopias/genetics , Cytoskeletal Proteins/genetics , Developmental Disabilities/genetics , Lissencephaly/genetics , Female , Humans , Male , Pedigree
7.
Am J Hum Genet ; 105(3): 606-615, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474318

ABSTRACT

Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.


Subject(s)
Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Cohort Studies , Female , Humans , Male , Pregnancy
8.
Am J Hum Genet ; 105(4): 689-705, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31495489

ABSTRACT

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.


Subject(s)
Arthrogryposis/genetics , Microcephaly/genetics , Neurodevelopmental Disorders/genetics , Sphingomyelin Phosphodiesterase/genetics , Arthrogryposis/pathology , Cell Lineage , Child , Endoplasmic Reticulum/metabolism , Female , Gene Expression Profiling , HEK293 Cells , Humans , Male , Microcephaly/pathology , Mitosis , Neurodevelopmental Disorders/pathology , Pedigree , RNA Splicing
9.
Clin Genet ; 101(1): 32-47, 2022 01.
Article in English | MEDLINE | ID: mdl-34240408

ABSTRACT

Growth promoting variants in PIK3CA cause a spectrum of developmental disorders, depending on the developmental timing of the mutation and tissues involved. These phenotypically heterogeneous entities have been grouped as PIK3CA-Related Overgrowth Spectrum disorders (PROS). Deep sequencing technologies have facilitated detection of low-level mosaic, often necessitating testing of tissues other than blood. Since clinical management practices vary considerably among healthcare professionals and services across different countries, a consensus on management guidelines is needed. Clinical heterogeneity within this spectrum leads to challenges in establishing management recommendations, which must be based on patient-specific considerations. Moreover, as most of these conditions are rare, affected families may lack access to the medical expertise that is needed to help address the multi-system and often complex medical issues seen with PROS. In March 2019, macrocephaly-capillary malformation (M-CM) patient organizations hosted an expert meeting in Manchester, United Kingdom, to help address these challenges with regards to M-CM syndrome. We have expanded the scope of this project to cover PROS and developed this consensus statement on the preferred approach for managing affected individuals based on our current knowledge.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Standard of Care , Consensus Development Conferences as Topic , Diagnosis, Differential , Disease Management , Genetic Association Studies/methods , Genetic Testing , Growth Disorders/diagnosis , Growth Disorders/genetics , Growth Disorders/therapy , Humans , Phenotype , Prenatal Diagnosis
10.
Am J Hum Genet ; 103(6): 1009-1021, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30471716

ABSTRACT

To date, mutations in 15 actin- or microtubule-associated genes have been associated with the cortical malformation lissencephaly and variable brainstem hypoplasia. During a multicenter review, we recognized a rare lissencephaly variant with a complex brainstem malformation in three unrelated children. We searched our large brain-malformation databases and found another five children with this malformation (as well as one with a less severe variant), analyzed available whole-exome or -genome sequencing data, and tested ciliogenesis in two affected individuals. The brain malformation comprised posterior predominant lissencephaly and midline crossing defects consisting of absent anterior commissure and a striking W-shaped brainstem malformation caused by small or absent pontine crossing fibers. We discovered heterozygous de novo missense variants or an in-frame deletion involving highly conserved zinc-binding residues within the GAR domain of MACF1 in the first eight subjects. We studied cilium formation and found a higher proportion of mutant cells with short cilia than of control cells with short cilia. A ninth child had similar lissencephaly but only subtle brainstem dysplasia associated with a heterozygous de novo missense variant in the spectrin repeat domain of MACF1. Thus, we report variants of the microtubule-binding GAR domain of MACF1 as the cause of a distinctive and most likely pathognomonic brain malformation. A gain-of-function or dominant-negative mechanism appears likely given that many heterozygous mutations leading to protein truncation are included in the ExAC Browser. However, three de novo variants in MACF1 have been observed in large schizophrenia cohorts.


Subject(s)
Axon Guidance/genetics , Cell Movement/genetics , Conserved Sequence/genetics , Microfilament Proteins/genetics , Mutation/genetics , Neurons/pathology , Zinc/metabolism , Adolescent , Brain Stem/pathology , Child , Child, Preschool , Cilia/genetics , Female , Humans , Lissencephaly/genetics , Male , Microtubules/genetics , Nervous System Malformations/genetics
11.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388402

ABSTRACT

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Subject(s)
Haploinsufficiency/genetics , Intellectual Disability/genetics , Megalencephaly/genetics , NFI Transcription Factors/genetics , Adolescent , Adult , Animals , Cerebral Cortex/pathology , Child , Child, Preschool , Codon, Nonsense/genetics , Cohort Studies , Corpus Callosum/pathology , Female , Humans , Male , Mice , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Young Adult
12.
Am J Hum Genet ; 102(2): 309-320, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29394990

ABSTRACT

Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.


Subject(s)
Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Genetic Heterogeneity , Muscular Atrophy/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Noonan Syndrome/genetics , cdc42 GTP-Binding Protein/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Adolescent , Adult , Child , Child, Preschool , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Female , Gene Expression , Humans , Infant , Male , Models, Molecular , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Noonan Syndrome/metabolism , Noonan Syndrome/pathology , Phenotype , Protein Structure, Secondary , Severity of Illness Index , cdc42 GTP-Binding Protein/chemistry , cdc42 GTP-Binding Protein/metabolism
13.
Genet Med ; 23(1): 123-130, 2021 01.
Article in English | MEDLINE | ID: mdl-32884133

ABSTRACT

PURPOSE: Vascular malformations (VM) are primarily caused by somatic activating pathogenic variants in oncogenes. Targeted pharmacotherapies are emerging but require molecular diagnosis. Since variants are currently only detected in malformation tissue, patients may be ineligible for clinical trials prior to surgery. We hypothesized that cell-free DNA (cfDNA) could provide molecular diagnoses for patients with isolated VM. METHODS: cfDNA was isolated from plasma or cyst fluid from patients with arteriovenous malformations (AVM), venous malformations (VeM), or lymphatic malformations (LM), and assayed for known pathogenic variants using droplet digital polymerase chain reaction (ddPCR). Cyst fluid cfDNA from an independent cohort of LM patients was prospectively screened for variants using a multiplex ddPCR assay. RESULTS: Variants were detected in plasma cfDNA in patients with AVM (2/8) and VeM (1/3). Variants were detected in cyst fluid cfDNA (7/7) but not plasma (0/26) in LM patients. Prospective testing of cyst fluid cfDNA with multiplex ddPCR identified variants in LM patients who had never undergone surgery (4/5). CONCLUSION: Variants were detected in plasma from AVM and VeM patients, and in cyst fluid from patients with LM. These data support investigation of cfDNA-based molecular diagnostics for VM patients, which may provide opportunities to initiate targeted pharmacotherapies without prior surgery.


Subject(s)
Cell-Free Nucleic Acids , Vascular Malformations , Cell-Free Nucleic Acids/genetics , Humans , Multiplex Polymerase Chain Reaction , Mutation , Prospective Studies , Vascular Malformations/diagnosis , Vascular Malformations/genetics
14.
Genet Med ; 23(7): 1246-1254, 2021 07.
Article in English | MEDLINE | ID: mdl-33824500

ABSTRACT

PURPOSE: To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder. METHODS: A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization. RESULTS: Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons. CONCLUSION: Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Pedigree , Exome Sequencing
15.
Genet Med ; 23(11): 2122-2137, 2021 11.
Article in English | MEDLINE | ID: mdl-34345025

ABSTRACT

PURPOSE: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. METHODS: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. RESULTS: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. CONCLUSION: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.


Subject(s)
Epilepsy , Histone-Lysine N-Methyltransferase , Intellectual Disability , Neurodevelopmental Disorders , Epilepsy/diagnosis , Epilepsy/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Male , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Seizures/diagnosis , Seizures/genetics
16.
Ann Neurol ; 88(6): 1077-1094, 2020 12.
Article in English | MEDLINE | ID: mdl-32856318

ABSTRACT

OBJECTIVE: Mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) complex have been associated with a broad spectrum of brain and organ overgrowth syndromes. For example, mutations in phosphatidylinositol-3-kinase regulatory subunit 2 (PIK3R2) have been identified in human patients with megalencephaly polymicrogyria polydactyly hydrocephalus (MPPH) syndrome, which includes brain overgrowth. To better understand the pathogenesis of PIK3R2-related mutations, we have developed and characterized a murine model. METHODS: We generated a knock-in mouse model for the most common human PIK3R2 mutation, p.G373R (p.G367R in mice) using CRISPR/Cas9. The mouse phenotypes, including brain size, seizure activity, cortical lamination, cell proliferation/size/density, interneuron migration, and PI3K pathway activation, were analyzed using standard methodologies. For human patients with PIK3R2 mutations, clinical data (occipitofrontal circumference [OFC] and epilepsy) were retrospectively obtained from our clinical records (published / unpublished). RESULTS: The PI3K-AKT pathway was hyperactivated in these mice, confirming the p.G367R mutation is an activating mutation in vivo. Similar to human patients with PIK3R2 mutations, these mice have enlarged brains. We found cell size to be increased but not cell numbers. The embryonic brain showed mild defects in cortical lamination, although not observed in the mature brain. Furthermore, electroencephalogram (EEG) recordings from mutant mice showed background slowing and rare seizures, again similar to our observations in human patients. INTERPRETATION: We have generated a PIK3R2 mouse model that exhibits megalencephaly and EEG changes, both of which overlap with human patients. Our data provide novel insight into the pathogenesis of the human disease caused by PIK3R2 p.G373R mutation. We anticipate this model will be valuable in testing therapeutic options for human patients with MPPH. ANN NEUROL 2020;88:1077-1094.


Subject(s)
Brain/pathology , Megalencephaly/pathology , Phosphatidylinositol 3-Kinases/genetics , Seizures/genetics , Animals , Electroencephalography , Epilepsy/diagnosis , Female , Gene Knock-In Techniques/methods , Humans , Male , Megalencephaly/genetics , Mice , Mutation , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/genetics , Syndrome
17.
Am J Med Genet A ; 185(9): 2801-2808, 2021 09.
Article in English | MEDLINE | ID: mdl-33938618

ABSTRACT

In this review, we explore evidence that hypoxia in the developing human fetus can lead not only to the more commonly accepted disruptive-type defects, but also patterns of anomalies that suggest that hypoxia can exert a more classic teratogenic effect, using the brain as one example. We review neuropathology in the context of intrauterine hypoxia, particularly as it relates to carbon monoxide poisoning, in utero strokes, and homozygous alpha-thalassemia. In general, the associated brain injuries resemble those seen with other causes of hypoxic-ischemic injury. Fetal strokes during development usually lead to loss of brain tissue in areas that do not follow a typical embryologic pattern, and therefore are considered disruptions. However, there is also evidence that fetal brain ischemia can cause more classically recognized patterns of abnormal embryonic neuronal migration and organization such as polymicrogyria, cortical dysplasia, or dysgenesis, including select types of focal cortical dysplasia. This study summarizes available literature and evidence to raise clinicians' awareness regarding the association between hypoxia and congenital anomalies, including brain malformations.


Subject(s)
Abnormalities, Multiple/pathology , Congenital Abnormalities/pathology , Hypoxia/physiopathology , Teratogenesis , Teratogens/chemistry , Abnormalities, Multiple/etiology , Congenital Abnormalities/etiology , Humans
18.
Am J Med Genet A ; 185(9): 2719-2738, 2021 09.
Article in English | MEDLINE | ID: mdl-34087052

ABSTRACT

Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.


Subject(s)
Brain/abnormalities , Cyclin D2/genetics , Hydrocephalus/pathology , Megalencephaly/pathology , Mutation , Polydactyly/pathology , Polymicrogyria/pathology , Adolescent , Adult , Child , Female , Humans , Hydrocephalus/genetics , Infant , Male , Megalencephaly/genetics , Polydactyly/genetics , Polymicrogyria/genetics
19.
Am J Med Genet A ; 185(9): 2690-2718, 2021 09.
Article in English | MEDLINE | ID: mdl-33205886

ABSTRACT

Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.


Subject(s)
Brain/abnormalities , Brain/pathology , Diseases in Twins/pathology , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Adult , Diseases in Twins/genetics , Female , Humans , Infant, Newborn , Male , Pregnancy , Review Literature as Topic
20.
Am J Med Genet C Semin Med Genet ; 184(4): 1030-1041, 2020 12.
Article in English | MEDLINE | ID: mdl-33274544

ABSTRACT

We describe our experiences with organizing pro bono medical genetics and neurology outreach programs on several different resource-limited islands in the West Indies. Due to geographic isolation, small population sizes, and socioeconomic disparities, most Caribbean islands lack medical services for managing, diagnosing, and counseling individuals with genetic disorders. From 2015 to 2019, we organized 2-3 clinics per year on various islands in the Caribbean. We also organized a week-long clinic to provide evaluations for children suspected of having autism spectrum disorder. Consultations for over 100 different individuals with suspected genetic disorders were performed in clinics or during home visits following referral by locally registered physicians. When possible, follow-up visits were attempted. When available and appropriate, clinical samples were shipped to collaborating laboratories for molecular analysis. Laboratory tests included karyotyping, cytogenomic microarray analysis, exome sequencing, triplet repeat expansion testing, blood amino acid level determination, biochemical assaying, and metabolomic profiling. We believe that significant contributions to healthcare by genetics professionals can be made even if availability is limited. Visiting geneticists may help by providing continuing medical education seminars. Clinical teaching rounds help to inform local physicians regarding the management of genetic disorders with the aim of generating awareness of genetic conditions. Even when only periodically available, a visiting geneticist may benefit affected individuals, their families, their local physicians, and the community at large.


Subject(s)
Autism Spectrum Disorder , Physicians , Child , Delivery of Health Care , Humans , Referral and Consultation , West Indies
SELECTION OF CITATIONS
SEARCH DETAIL