Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Int J Mol Sci ; 24(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37298709

ABSTRACT

Phosphate (PO43-) is an essential nutrient in agriculture; however, it is hazardous to the environment if discharged in excess as in wastewater discharge and runoff from agriculture. Moreover, the stability of chitosan under acidic conditions remains a concern. To address these problems, CS-ZL/ZrO/Fe3O4 was synthesized using a crosslinking method as a novel adsorbent for the removal of phosphate (PO43-) from water and to increase the stability of chitosan. The response surface methodology (RSM) with a Box-Behnken design (BBD)-based analysis of variance (ANOVA) was implemented. The ANOVA results clearly showed that the adsorption of PO43- onto CS-ZL/ZrO/Fe3O4 was significant (p ≤ 0.05), with good mechanical stability. pH, dosage, and time were the three most important factors for the removal of PO43-. Freundlich isotherm and pseudo-second-order kinetic models generated the best equivalents for PO43- adsorption. The presence of coexisting ions for PO43- removal was also studied. The results indicated no significant effect on PO43- removal (p ≤ 0.05). After adsorption, PO43- was easily released by 1 M NaOH, reaching 95.77% and exhibiting a good capability over three cycles. Thus, this concept is effective for increasing the stability of chitosan and is an alternative adsorbent for the removal of PO43- from water.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Chitosan/chemistry , Phosphates , Water/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
2.
Mar Drugs ; 15(7)2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28714912

ABSTRACT

This study examined the urinary excretion of tetrodotoxin (TTX) modeled in a porcine renal proximal tubule epithelial cell line, LLC-PK1. Time course profiles of TTX excretion and reabsorption across the cell monolayers at 37 °C showed that the amount of TTX transported increased linearly for 60 min. However, at 4 °C, the amount of TTX transported was approximately 20% of the value at 37 °C. These results indicate that TTX transport is both a transcellular and carrier-mediated process. Using a transport inhibition assay in which cell monolayers were incubated with 50 µM TTX and 5 mM of a transport inhibitor at 37 °C for 30 min, urinary excretion was significantly reduced by probenecid, tetraethylammonium (TEA), l-carnitine, and cimetidine, slightly reduced by p-aminohippuric acid (PAH), and unaffected by 1-methyl-4-phenylpyridinium (MPP+), oxaliplatin, and cefalexin. Renal reabsorption was significantly reduced by PAH, but was unaffected by probenecid, TEA and l-carnitine. These findings indicate that TTX is primarily excreted by organic cation transporters (OCTs) and organic cation/carnitine transporters (OCTNs), partially transported by organic anion transporters (OATs) and multidrug resistance-associated proteins (MRPs), and negligibly transported by multidrug and toxic compound extrusion transporters (MATEs).


Subject(s)
Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Renal Elimination/physiology , Tetrodotoxin/urine , 1-Methyl-4-phenylpyridinium/pharmacology , Animals , Biological Transport/drug effects , Biological Transport/physiology , Carnitine/pharmacology , Cell Line , Epithelial Cells/drug effects , Kidney Tubules, Proximal/drug effects , Multidrug Resistance-Associated Proteins/metabolism , Organic Anion Transporters/metabolism , Probenecid/pharmacology , Renal Elimination/drug effects , Swine , Tetraethylammonium/pharmacology
3.
Anal Bioanal Chem ; 408(22): 5963-71, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27173395

ABSTRACT

Recently, point of care testing (POCT) used for diagnosis of influenza infection has a problem showing false negative diagnosis because of the low sensitivity. We would like to report detection of influenza virus A (H1N1) by an immunosensor based on electrochemiluminescence (ECL) that uses an immunoliposome encapsulating tris(2,2'-bipyridyl)ruthenium(II) complex. By using the sensor, we could detect the virus that competed with hemagglutinin (HA) peptide immobilized on self-assembled monolayers (SAMs) in immunoreaction of the antibody bound on the surface of liposome. The HA peptide was 19 mer (TGLRNGITNKVNSVIEKAA). We demonstrated great improvement of sensitivity and accuracy by introducing binary SAMs instead of mono SAMs. The binary SAMs was prepared from 3,3'-dithiodipropionic acid and 1-hexanethiol. Use of the binary SAMs enabled to increase the SAMs coverage on Au electrode; the fact was confirmed by observation of the cathodic desorption currents. By using such an electrode, first the detection method of BSA was optimized to lower ECL background signal. Then we applied the method to the detection of influenza virus. We could successfully detect the virus with higher sensitivity compared with that by POCT and ELISA. The detection range was from a concentration of 2.7 × 10(2) to 2.7 × 10(3) PFU/mL.


Subject(s)
Biosensing Techniques/methods , Influenza A Virus, H1N1 Subtype/isolation & purification , Liposomes/chemistry , Luminescent Measurements/methods , Organometallic Compounds/chemistry , Animals , Antibodies, Immobilized/chemistry , Cattle , Hemagglutinins/chemistry , Humans , Immobilized Proteins/chemistry , Immunoassay/methods , Influenza, Human/diagnosis , Influenza, Human/virology , Peptides/chemistry , Sensitivity and Specificity , Serum Albumin, Bovine/analysis
4.
J Air Waste Manag Assoc ; 65(10): 1247-55, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26230452

ABSTRACT

UNLABELLED: This study was conducted to examine the synthesis and application of novel nano-size calcium/iron-based composite material as an immobilizing and separation treatment of the heavy metals in fly ash from municipal solid waste incineration. After grinding with nano-Fe/Ca/CaO and with nano-Fe/Ca/CaO/[PO4], approximately 30 wt% and 25 wt% of magnetic fraction fly ash were separated. The highest amount of entrapped heavy metals was found in the lowest weight of the magnetically separated fly ash fraction (i.e., 91% in 25% of treated fly ash). Heavy metals in the magnetic or nonmagnetic fly ash fractions were about 98% and 100% immobilized, respectively. Additionally, scanning electron microscopy combined with energy-dispersive X-ray spectrometry (SEM-EDS) observations indicate that the main fraction of enclosed/bound materials on treated fly ash includes Ca/PO4-associated crystalline complexes. After nano-Fe/Ca/CaO/[PO4] treatment, the heavy metal concentrations in the fly ash leachate were much lower than the Japan standard regulatory limit for hazardous waste landfills. These results appear to be extremely promising. The addition of a nano-Fe/Ca/CaO/PO4mixture with simple grinding technique is potentially applicable for the remediation and volume reduction of fly ash contaminated by heavy metals. IMPLICATIONS: After grinding with nano-Fe/Ca/CaO and nano-Fe/Ca/CaO/[PO4], approximately 30 wt% and 25 wt% of magnetic fraction fly ash were separated. The highest amount of entrapped heavy metals was found in the lowest weight of the magnetically separated fly ash fraction (i.e., 91% in 25% of treated fly ash), whereas heavy metals either in the magnetic or nonmagnetic fly ash fractions were about 98% and 100% immobilized. These results appear to be very promising, and the addition of nano-Fe/Ca/CaO/PO4mixture with simple grinding technique may be considered potentially applicable for the remediation and volume reduction of contaminated fly ash by heavy metals.


Subject(s)
Coal Ash/analysis , Incineration , Metal Nanoparticles/chemistry , Metals, Heavy/analysis , Calcium/chemistry , Indicators and Reagents/chemistry , Iron/chemistry , Microscopy, Electron, Scanning , Solid Waste/analysis , Spectrometry, X-Ray Emission
5.
Environ Technol ; : 1-20, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853669

ABSTRACT

High concentrations of ammonium, phosphate, and phenol are recognized as water pollutants that contribute to the degradation of soil acidity. In contrast, small quantities of these nutrients are essential for soil nutrient cycling and plant growth. Here, we reported composite materials comprising biochar, chitosan, ZrO, and Fe3O4, which were employed to mitigate ammonium, phosphate, and phenol contamination in water and to lessen soil acidity. Batch adsorption experiments were conducted to assess the efficacy of the adsorbents. Initially, comparative studies on the simultaneous removal of NH4, PO4, and phenol using CB (biochar), CBC (biochar + chitosan), CBCZrO (biochar + chitosan + ZrO), and CBCZrOFe3O4 (biochar + chitosan + ZrO + Fe3O4) were conducted. The results discovered that CBCZrOFe3O4 exhibited the highest removal percentage among the adsorbents (P < 0.05). Adsorption data for CBCZrOFe3O4 were well fitted to the second-order kinetic and Freundlich isotherm models, with maximum adsorption capacities of 112.65 mg/g for NH4, 94.68 mg/g for PO4 and 112.63 mg/g for phenol. Subsequently, the effect of CBCZrOFe3O4-loaded NH4, PO4, and phenol (CBCZrOFe3O4-APP) on soil acidity was studied over a 60-day incubation period. The findings showed no significant changes (P < 0.05) in soil exchangeable acidity, H+, Mg, K, and Na. However, there was a substantial increase in the soil pH, EC, available P, CEC, N-NH4, and N-NO3. A significant reduction was also observed in the available soil exchangeable Al and Fe (P < 0.05). This technique demonstrated multi-functionality in remediating water pollutants and enhancing soil acidity.

6.
Arch Environ Contam Toxicol ; 64(2): 180-6, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23192587

ABSTRACT

This study describes the decomposition of polychlorinated biphenyls (PCBs) in soil with dispersion mixtures of metallic calcium (Ca) and calcium oxide (CaO) at different temperatures. In these experiments, naturally moisturized and contaminated soil (1.0 g [31 ppm PCBs]), CaO (dried 2.0 wt%), and metallic Ca (0.01 g [0.25 mmol]) were introduced into a stainless steel pressure reactor under 0.1 MPa N(2) gas. The mixtures were stirred magnetically and heated at 260, 280, and 300 °C, respectively. Soil treatment with metallic Ca and CaO under various temperature conditions is extremely effective for degrading existing PCBs. Decomposition resulted from dechlorination (DC). Initial moisture in soil acted as a hydrogen source during stirring. Soil moisture can be beneficial for hydrodechlorination in the presence of metallic Ca and CaO. Furthermore, metallic Ca and CaO can greatly increase the number of collisions and mutual refinement. Treatment at 260, 280, and 300 °C combined with metallic Ca and CaO is effective for the decomposition (approximately 95 % DC) of PCBs in soil under natural moisture conditions.


Subject(s)
Calcium Compounds/chemistry , Calcium/chemistry , Environmental Restoration and Remediation/methods , Oxides/chemistry , Polychlorinated Biphenyls/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Polychlorinated Biphenyls/analysis , Soil Pollutants/analysis
7.
Gels ; 9(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37623067

ABSTRACT

Heavy metals, such as chromium (VI) and lead (II), are the most common pollutants found in wastewater. To solve these problems, this research was intended to synthesize magnetite hydrogel beads (CMC-CS-Fe3O4) by crosslinking carboxymethyl cellulose (CMC) and chitosan (CS) and impregnating them with iron oxide (Fe3O4) as a potential adsorbent to remove Cr (VI) and Pb (II) from water. CMC-CS-Fe3O4 was characterized by pHzpc, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Batch removal experiments with different variables (CMC:CS ratio, pH, initial metals concentration, and contact time) were conducted, and the results revealed that CMC-CS-Fe3O4 with a CMC:CS (3:1) ratio had the best adsorption capacity for Cr (VI) and Pb (II) at pH levels of 2 and 4, respectively. The findings of this research revealed that the maximum adsorption capacity for Cr (VI) and Pb (II) were 3.5 mg/g and 18.26 mg/g, respectively, within 28 h at 30 ℃. The adsorption isotherm and adsorption kinetics suggested that removal of Cr (VI) and Pb (II) were fitted to Langmuir and pseudo-second orders. The highest desorption percentages for Cr (VI) and Pb (II) were 70.43% and 83.85%, achieved using 0.3 M NaOH and 0.01 M N·a2EDTA, respectively. Interestingly, after the first cycle of the adsorption-desorption process, the hydrogel showed a sudden increase in adsorption capacity for Cr (VI) and Pb (II) until it reached 7.7 mg/g and 33.0 mg/g, respectively. This outcome may have certain causes, such as entrapped metal ions providing easy access to the available sites inside the hydrogel or thinning of the outer layer of the beads leading to greater exposure toward active sites. Hence, CMC-CS-Fe3O4 hydrogel beads may have potential application in Cr (VI) and Pb (II) removal from aqueous solutions for sustainable environments.

8.
Materials (Basel) ; 16(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36984412

ABSTRACT

To address Cu(II) and Cr(VI) water pollution, a carbonized zeolite/chitosan (C-ZLCH) composite adsorbent was produced via pyrolysis at 500 °C for two hours. C-ZLCH was characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential measurements. The batch experiments were performed by varying the initial pH, concentration, and contact time. The optimal pH values for Cu(II) and Cr(VI) were 8.1 and 9.6, respectively. The highest adsorption capacities for Cu(II) and Cr(VI) were 111.35 mg/g at 60 min and 104.75 mg/g at 90 min, respectively. The effects of chemicals such as sodium (Na+), glucose, ammonium (NH4+), and acid red 88 (AR88) were also studied. Statistical analysis showed that sodium had no significant effect on Cu(II) removal, in contrast to Cr(VI) removal. However, there was a significant effect of the presence of glucose, ammonium, and AR88 on both Cu(II) and Cr(VI) removal. The adsorption isotherm and kinetic models were fitted using Langmuir and pseudo-second-order models for Cu(II) and Cr(VI), respectively.

9.
Chemosphere ; 311(Pt 2): 137197, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36356819

ABSTRACT

Soil contamination by PCBs is still known as a serious problem across the world, and the development of new technologies or the improvement of existing ones (e.g. higher efficiency, shorter processing time, lower input energy) are more and more important. Moreover, understanding the chemistry of the entire process, from a mechanistic point of view, can accelerate the process of improvement. In these circumstances, we attempted a clarification of the highly efficient degradation of PCBs by nano-sized particle of metallic Ca in CaO ("nCa") at 250 °C in dry solid state conditions. The reaction involved the hydrodechlorination, simple reduction, reductive coupling and hydroxylation processes. The detoxification efficiency reached over 99%. A tentative pathway and mechanism is proposed for explaining the final reactions products. Finally, the process was applied to real PCBs-contaminated soil, containing various amounts of PCBs, with a total success in completely eliminating the toxic polychlorinated compounds.

10.
Gels ; 8(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36547306

ABSTRACT

In the present study, alkaline-treated zeolite/chitosan/Fe3+ (ZLCH-Fe) composites were prepared and analyzed using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and pH of zero point of charge (pHzpc) to remove nitrates from water. The process was carried out using an adsorption method with a varied initial pH, adsorbent dosage, initial nitrate concentration and contact time. The pHzpc demonstrated that the ZLCH-Fe surface had a positive charge between 2 and 10, making it easier to capture the negative charge of nitrate. However, the optimal pH value is 7. After 270 min, the maximum adsorption capacity and percent removal reached 498 mg/g and 99.64%, respectively. Freundlich and pseudo-second-order were fitted to the adsorption isotherm and kinetic models, respectively. An evaluation was conducted on the effects of anions-SO42- and PO43--and dyes-methylene blue (MB) and acid red 88 (AR88)-upon nitrate removal. The results indicated that the effect of the anion could be inhibited, in contrast to dye effects. However, the optimal pH values were changed to 10 for MB and 2 for AR88, resulting in a hydrogel formation. This might be indicated by the protonation of hydroxyl and amino groups resulting from a chitosan nitrate reaction in the AR88 solution.

11.
Polymers (Basel) ; 14(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35267716

ABSTRACT

In the present study, we developed a new adsorbent product with zeolite crosslinked chitosan (ZL-CH hydrogel) to remove acid red 88 (AR88) in an aqueous solution. The effects of several factors, such as the comparison of ZL-CH hydrogel and the absence of chitosan, pH, adsorbent dosage, initial AR88 concentration, contact time, and ion strength, were determined. Obtained results showed that ZL-CH hydrogel improved AR88 removal compared to the absence of chitosan, with an adsorption capacity of 332.48 mg/g in equilibrium time of 1 min, and adding ionic strength had no significant effect. However, with optimal conditions at pH 2.0, dry ZL-CH became hydrogel due to protonation of amino and hydroxyl groups through hydrogen bonds in the AR88 solution. Volume fraction and interaction force decreased with increasing porosity, leading to an increase in adsorption capacity and swelling ratio. Experimental data of the adsorption process showed the Freundlich isotherm model. The equilibrium for adsorption and swelling kinetics studies showed and fitted a pseudo-second-order model. NaOH was successful as a desorbing agent with 93.8%, and it followed the pseudo-second-order kinetics model. The recycling process indicates great potential for AR88 removal.

12.
Anal Chem ; 80(11): 4020-5, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18447321

ABSTRACT

An immunoliposome (80 nm in diameter) encapsulating a Ru complex with two aminobutyl moieties was prepared to detect the presence of hemagglutinin molecules, which play an important role in influenza virus infection. The highly sensitive detection was accomplished by electrochemiluminescence (ECL) from the Ru complex adsorbed onto Au electrodes after competitive immunoreactions. This method clarified that the adsorption of the Ru complex onto the electrode was an important factor in obtaining high sensitivity. Optimization of the analytical conditions enabled determination of the hemagglutinin molecules of the influenza virus in the concentration range of 3 x 10(-14) (6 x 10(-19) mol/50 microL sample) to 2 x 10(-12) g/mL. The sensitivity was far superior to that obtained by conventional ELISA as well as to that obtained by biosensors and reported thus far.


Subject(s)
Biosensing Techniques/instrumentation , Hemagglutinins/analysis , Immunoassay/methods , Liposomes/immunology , Luminescent Measurements/methods , Organometallic Compounds/immunology , Orthomyxoviridae/chemistry , Ruthenium Compounds/immunology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Calibration , Electrochemistry , Electrodes , Gold/chemistry , Hemagglutinins/immunology , Molecular Sequence Data , Organometallic Compounds/chemistry , Orthomyxoviridae/immunology , Orthomyxoviridae/isolation & purification , Peptides/chemistry , Ruthenium Compounds/chemistry , Sensitivity and Specificity
13.
Waste Manag ; 60: 428-438, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28089400

ABSTRACT

The separation of plastics containing brominated flame retardants (BFR) like (acrylonitrile-butadiene-styrene (ABS), high-impact polystyrene (HIPS), and polyvinyl chloride (PVC)) from automobile and electronic waste shredder residue (ASR/ESR) are a major concern for thermal recycling. In laboratory scale tests using a hybrid nano-Fe/Ca/CaO assisted ozonation treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing ABS wettability and thereby promoting its separation from ASR/ESR by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR and about 21.2°, 20.7°, and 20.0° in ESR respectively. SEM-EDS, FT-IR, and XPS analyses demonstrated a marked decrease in [Cl] and a significant increase in the number of hydrophilic groups, such as CO, CO, and (CO)O, on the PVC or ABS surface. Under froth flotation conditions at 50rpm, about 99.1% of combined fraction of ABS/HIPS in ASR samples and 99.6% of ABS/HIPS in ESR samples were separated as settled fraction. After separation, the purity of the recovered combined ABS/HIPS fraction was 96.5% and 97.6% in ASR and ESR samples respectively. Furthermore, at 150rpm a 100% PVC separation in the settled fraction, with 98% and 99% purity in ASR and ESR plastics, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. Further, this process improved the quality of recycled ASR/ESR plastics by removing surface contaminants or impurities.


Subject(s)
Automobiles , Electronic Waste , Ozone/chemistry , Recycling/methods , Acrylonitrile , Butadienes , Calcium/chemistry , Calcium Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Iron/chemistry , Nanotechnology/methods , Oxides/chemistry , Polystyrenes , Polyvinyl Chloride , Refuse Disposal/methods , Spectroscopy, Fourier Transform Infrared , Waste Products/analysis
14.
Environ Sci Pollut Res Int ; 24(5): 4469-4479, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27943143

ABSTRACT

One method of weakening the inherently hydrophobic surface of plastics relevant to flotation separation is heterogeneous nano-Fe/Ca/CaO catalytic ozonation. Nano-Fe/Ca/CaO-catalyzed ozonation for 15 min efficiently decreases the surface hydrophobicity of brominated and chlorinated flame retardant (B/CFR)-containing plastics (such as acrylonitrile-butadienestyrene (ABS), high-impact polystyrene (HIPS), and polyvinyl chloride (PVC)) in automobile shredder residue (ASR) to such an extent that their flotation ability is entirely depressed. Such a hydrophilization treatment also stimulates the ABS, HIPS, and PVC surface roughness, wetting of the surface, and the thermodynamic equilibrium conditions at the surface and ultimately changes surface polarity. SEM-EDS, AFM, and XPS analyses of the PVC and ABS surfaces demonstrated a marked decrease in [Cl/Br] and a significant increase in the number of hydrophilic groups, such as C-O, C=O, and (C=O)-O. Under froth flotation conditions at 50 rpm, about 99.5 % of ABS and 99.5 % of HIPS in ASR samples settled out, resulting in a purity of 98 and 98.5 % for ABS and HIPS in ASR samples, respectively. Furthermore, at 150 rpm, we also obtained 100 % PVC separation in the settled fraction, with 98 % purity in ASR. Total recovery of non-B/CFR-containing plastics reached nearly 100 % in the floating fraction. The amount of nano-Fe/Ca/CaO reagent employed during ozonation is very small, and additional removal of surface contaminants from the recycled ASR plastic surfaces by ozonation makes the developed process simpler, greener, and more effective.


Subject(s)
Calcium Compounds/chemistry , Calcium/chemistry , Flame Retardants/analysis , Iron/chemistry , Nanostructures/chemistry , Oxides/chemistry , Ozone/chemistry , Plastics/chemistry , Automobiles , Catalysis , Halogenation , Hydrophobic and Hydrophilic Interactions , Surface Properties
15.
Environ Sci Pollut Res Int ; 24(1): 591-597, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27743324

ABSTRACT

Both hexachlorobenzene and hexabromobenzene were successfully hydrodehalogenated to the monohalogenated derivative and ultimately to benzene (which was subsequently reduced to cyclohexane) using a mixture of metallic Ca, ethanol, and Rh/C, by simple stirring in diethyl ether, at room or mild temperature (60 °C). Various experiments were performed in order to assess the role of the solvent and Rh/C catalyst, as well as for elucidating the reaction pathway.


Subject(s)
Bromobenzenes/chemistry , Calcium/chemistry , Ethanol/chemistry , Hexachlorobenzene/chemistry , Rhodium/chemistry , Solvents/chemistry , Carbon/chemistry , Catalysis , Temperature
16.
Environ Sci Pollut Res Int ; 23(22): 22783-22792, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27562813

ABSTRACT

Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90-100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45-1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L-1; Cr 1.5 mg L-1; Fe, Pb, and Zn 3.0 mg L-1; Mn and Ni 1 mg L-1) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.


Subject(s)
Calcium/chemistry , Hazardous Waste/analysis , Hydrocarbons, Halogenated/chemistry , Metals, Heavy/chemistry , Waste Management/methods , Automobiles , Calcium Compounds/chemistry , Indicators and Reagents , Oxides/chemistry , Spectrometry, X-Ray Emission
17.
Chemosphere ; 164: 92-97, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27580262

ABSTRACT

In order to elucidate the metal-alcohol hydrodechlorination reaction mechanism, several experiments using chloroanisoles as substrates were performed. Thus, chloroanisoles were stirred at 60 °C for 2 h with a mixture of Ca, methanol and various reduction catalysts. The use of deuterated methanol and zeta potential experiments offered supplementary informations, pointing toward a probable radicalic mechanism that occurs on Ca and Pd/C surfaces.


Subject(s)
Anisoles/chemistry , Decontamination/methods , Environmental Pollutants/chemistry , Environmental Restoration and Remediation/methods , Halogenation , Calcium/chemistry , Carbon/chemistry , Ethanol/chemistry , Palladium/chemistry
18.
J Environ Radioact ; 139: 118-124, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25464047

ABSTRACT

Although direct radiation induced health impacts were considered benign, soil contamination with (137)Cs, due to its long-term radiological impact (30 years half-life) and its high biological availability is of a major concern in Japan in the aftermath of the Fukushima nuclear power plant disaster. Therefore (137)Cs reduction and immobilization in contaminated soil are recognized as important problems to be solved using suitable and effective technologies. One such thermal treatment/vitrification with nanometallic Ca/CaO amendments is a promising treatment for the ultimate immobilization of simulated radionuclide (133)Cs in soil, showing low leachability and zero evaporation. Immobilization efficiencies were 88%, 95% and 96% when the (133)Cs soil was treated at 1200 °C with activated carbon, fly ash and nanometallic Ca/CaO additives. In addition, the combination of nanometallic Ca/CaO and fly ash (1:1) enhanced the immobilization efficiency to 99%, while no evaporation of (133)Cs was observed. At lower temperatures (800 °C) the leachable fraction of Cs was only 6% (94% immobilization). Through the SEM-EDS analysis, decrease in the amount of Cs mass percent detectable on soil particle surface was observed after soil vitrified with nCa/CaO + FA. The (133)Cs soil was subjected to vitrified with nCa/CaO + FA peaks related to Ca, crystalline phases (CaCO3/Ca(OH)2), wollastonite, pollucite and hematite appeared in addition to quartz, kaolinite and bentonite, which probably indicates that the main fraction of enclosed/bound materials includes Ca-associated complexes. Thus, the thermal treatment with the addition of nanometallic Ca/CaO and fly ash may be considered potentially applicable for the remediation of radioactive Cs contaminated soil at zero evaporation, relatively at low temperature.


Subject(s)
Calcium Compounds/chemistry , Cesium Radioisotopes/chemistry , Fukushima Nuclear Accident , Oxides/chemistry
19.
J Hazard Mater ; 297: 74-82, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-25942697

ABSTRACT

This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ((133)Cs) and radioactive cesium species ((134)Cs and (137)Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO4], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant (133)Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO4], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped (134)Cs and (137)Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that (134)Cs and (137)Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO4] treated soil were characterized using SEM-EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil included Ca/PO4 associated crystalline complexes. These results suggest that simple grinding treatment with nano-Fe/Ca/CaO/[PO4] under dry conditions might be an extremely efficient separation and immobilization method for radioactive cesium contaminated soil.


Subject(s)
Calcium Compounds/chemistry , Calcium/chemistry , Cesium/isolation & purification , Iron/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Phosphates/chemistry , Soil Pollutants, Radioactive/isolation & purification , Adsorption , Cesium Radioisotopes/isolation & purification , Microscopy, Electron, Scanning , Models, Theoretical , Solubility , Surface Properties
20.
J Hazard Mater ; 296: 239-247, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-25935297

ABSTRACT

This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO4- associated crystalline complexes, and that immobile Ca/PO4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO4 as a simple, suitable and highly efficient material for the gentle immobilization of heavy metals in hazardous ASR thermal residue in dry condition.


Subject(s)
Automobiles , Calcium Compounds/chemistry , Hazardous Substances/analysis , Incineration , Metals, Heavy/analysis , Nanostructures/chemistry , Coal Ash/chemistry , Dust , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL