Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
ACS Nano ; 17(21): 21195-21205, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37862085

ABSTRACT

Teeth staining is a common dental health challenge in many parts of the world. Traditional teeth whitening techniques often lead to enamel damage and soft tissue toxicity due to the use of bioincompatible whitening reagents and continuous strong light irradiation. Herein, an "afterglow" photodynamic therapy (aPDT) for teeth whitening is proposed, which is realized by energy transition pathways of intersystem crossing. The covalent and hydrogen bonds formed by carbon dots embedded in silica nanoparticles (CDs@SiO2) facilitate the passage of energy through intersystem crossing (ISC), thereby extending the half-life of reactive oxygen species (ROS). The degradation efficiency of aPDT on dyes was higher than 95% in all cases. It can thoroughly whiten teeth by eliminating stains deep in the enamel without damaging the enamel structure and causing any tissue toxicity. This study illustrates the superiority of aPDT for dental whitening and the approach to exploring carbon-dots-based nanostructures in the treatment of oral diseases.


Subject(s)
Nanoparticles , Photochemotherapy , Tooth Bleaching , Tooth Bleaching/methods , Silicon Dioxide , Carbon , Photochemotherapy/methods
2.
Adv Healthc Mater ; 11(6): e2101448, 2022 03.
Article in English | MEDLINE | ID: mdl-34937144

ABSTRACT

Carbon dots (CDs) are considered as promising candidates with superior biocompatibilities for multimodel cancer theranostics. However, incorporation of exogenous components, such as targeting molecules and chemo/photo therapeutic drugs, is often required to improve the therapeutic efficacy. Herein, an "all-in-one" CDs that exhibit intrinsic bioactivities for bioimaging, potent tumor therapy, and postoperative management is proposed. The multifunctional CDs derived from gallic acid and tyrosine (GT-CDs) consist of a graphitized carbon core and N, O-rich functional groups, which endow them with a high near-infrared (NIR) photothermal conversion efficiency of 33.9% and tumor-specific cytotoxicity, respectively. A new imaging modality, photothermal optical coherence tomography, is introduced using GT-CDs as the contrast agent, offering the micrometer-scale resolution 3D tissue morphology of tumor. For cancer therapy, GT-CDs initiate the intracellular generation of reactive oxygen species in tumor cells but not normal cells, further induce the mitochondrial collapse and subsequent tumor cellular apoptosis. Combined with NIR photothermal treatment, synergistic antitumor therapy is achieved in vitro and in vivo. GT-CDs also promote the healing process of bacteria-contaminated skin wound, demonstrating their potential to prevent postoperative infection. The integrated theranostic strategy based on versatile GT-CDs supplies an alternative easy-to-handle pattern for disease management.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/therapeutic use , Carbon/pharmacology , Cell Line, Tumor , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Phototherapy/methods , Theranostic Nanomedicine , Tomography, Optical Coherence
3.
ACS Nano ; 16(11): 18027-18037, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36342325

ABSTRACT

Nanotechnology is considered as an emerging effective means to augment plant photosynthesis. However, there is still a lot of work to be done in this field. Here, we applied the upconversion nanoparticles (UCNPs) on lettuce leaves and found that the UCNPs were able to transport into the lettuce body and colocalize with the chloroplasts. It was proved that UCNPs could harvest the near-infrared light of sunlight and increase the electron transfer rate in the photosynthesis process, thus increasing the photosynthesis rate. The gene expression analysis showed that more than 90% of gene expression in photosynthesis was upregulated. After spraying the UCNP solution on the leaves of lettuce and placing the lettuce under sunlight for 1 week, the wet/dry weight of the leaves increased by 53.33% and 45.71%, respectively. This nanoengineering of light-harvesting UCNPs may have great potential for applications in agriculture.


Subject(s)
Nanoparticles , Infrared Rays , Nanotechnology , Photosynthesis
4.
J Mater Chem B ; 9(38): 8109-8120, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34494067

ABSTRACT

1T-phase niobium telluride (NbTe2) nanosheets are becoming increasingly important in emerging fields, such as spintronics, sensors and magneto-optoelectronics, due to their excellent physical and chemical properties. However, exploration on their biomedical applications are limited. Herein, ultrathin 1T-phase NbTe2 single-crystalline nanosheets with excellent photothermal performance, high drug-loading rate, near-infrared (NIR) light/acidic pH-triggered drug release, and low toxicity were developed for potentiated photothermal therapy. Importantly, they showed excellent biocompatibility in vivo and in vitro. NbTe2 nanosheets loaded with integrated stress response inhibitors (ISRIB) could achieve chemo-photothermal therapy of tumors through the ATF4-ASNS signaling axis. Ultrathin 1T-phase NbTe2 single-crystalline nanosheets with unique photothermal properties, drug loading rate and safety provide dramatic possibilities in biomedical applications, such as tissue imaging, photothermal therapeutics and pharmaceutics.


Subject(s)
Biocompatible Materials/chemistry , Drug Carriers/chemistry , Nanostructures/chemistry , Niobium/chemistry , Tellurium/chemistry , Animals , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Cell Line , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration , Infrared Rays , Liver Neoplasms/drug therapy , Male , Mice , Mice, Inbred BALB C , Nanostructures/therapeutic use , Nanostructures/toxicity , Photothermal Therapy/methods , Transplantation, Heterologous
5.
J Biophotonics ; 14(10): e202100165, 2021 10.
Article in English | MEDLINE | ID: mdl-34240824

ABSTRACT

New advances in the molecular mechanism of enamel mineralization reveal the practical significance of regenerative medicine in clinical transformation. Muscle segment homeobox 2 (MSX2), a transcription factor, is recently reported to be closely associated with the amelogenesis imperfecta (AI). To elucidate the biomineralization framework of AI enamel, herein, Msx2 gene mutant mice are investigated by dual-mode noninvasive spectroscopic analytical techniques for the first time. Optical coherence tomography (OCT) records the depth-resolved structural information of mice teeth, where a dramatic decrease in enamel thickness and quality occurred in Msx2 deficient (Msx2-/- ) enamel. And it has the advantages of fast, noninvasive and low cost. Raman spectroscopy, a powerful molecular fingerprint tool, further witnesses an imbalance of inorganic and organic contents in Msx2-/- enamel. In addition, abnormal expression of MSX2 also influences the spatial distribution of phosphate in enamel according to the Raman spectral imaging. Therefore, OCT integrated with Raman spectroscopy provides the quantitative label-free optical parameters of both the physical structure and chemical component in mice enamel, which strengthens the understanding of the biomineralization process underlying the Msx2-related amelogenesis imperfect.


Subject(s)
Amelogenesis Imperfecta , Animals , Dental Enamel/diagnostic imaging , Mice
6.
Adv Mater ; 33(49): e2104872, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34647365

ABSTRACT

As one of the most promising fluorescent nanomaterials, the fluorescence of carbon dots (CDs) in solution is extensively studied. Nevertheless, the synthesis of multicolor solid-state fluorescence (SSF) CDs is rarely reported. Herein, CDs with multicolor aggregation-induced emission are prepared using amine molecules, all of them exhibiting dual fluorescence emission at 480 nm (Em-1) and 580-620 nm (Em-2), which is related to the SS bonds of dithiosalicylic acid and the conjugated structure attached to CO/CN bonds, respectively. As a strong electron-withdrawing group, the increase of CN content makes dual-fluorescent groups on the surface of CDs produce push and pull electrons, which determines intramolecular charge transfer (ICT) between the double emission. With the increase in CN content from 35.6% to 58.4%, the ICT efficiency increases from 8.71% to 45.94%, changing the fluorescence of CDs from green to red. The increase of ICT efficiency causes fluorescence quantum yield enhancement by nearly five times and redshift of the fluorescence peak. Finally, based on the multicolor luminescence properties induced by the aggregation of CDs, pattern encryption and white-LED devices are realized. Based on the fat solubility and strong ultraviolet absorption characteristics of CDs, fingerprint detection and leaf anti-UV hazards are applied.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Luminescence , Nitrogen/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence
7.
Nanoscale ; 13(14): 6846-6855, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33885485

ABSTRACT

The mechanism of the solvation-dependent multicolor luminescence of carbon dots (CDs) is not clear, despite the fact that multicolor luminescent CDs have important applications in many fields. In this article, we report solvated chromogenic CDs with productivity of up to 57%. The luminescence of the CD particles exhibits a regular redshift in N,N-dimethylformamide (DMF), ethanol, water, and acetic acid. The redshift of the CDs may be ascribed to the linking of the CD surfaces to the solvent through hydrogen bonds (HB). Different surface level states are formed by HB between the surfaces of the CDs and the solvent, and differences in dispersion states lead to different energy resonance transfer (ETR) efficiencies. The CDs/B2O3 composite exhibits excellent fluorescence thermal stability, and it has also been used to manufacture white-light-emitting devices with a high color rendering index of 87. Additionally, the excellent solvation effects of the CDs have application prospects in the detection of the water content in organic solvents. Finally, the CDs are used to realize cell imaging and positioning, which has significant application prospects in biological fields.

SELECTION OF CITATIONS
SEARCH DETAIL