Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
Chem Biodivers ; 20(9): e202300479, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37667613

ABSTRACT

Leaves of jamun collected as agro by-produce during the cultivation of jamun is traditionally used as ayurvedic medicine to treat diabetes, gall bladder stones and other ailments. Most of the beneficial effects of jamun leaves are associated with phytochemicals found in jamun leaves such as gallic acid, tannins, mallic acid, flavonoids, essential oils, jambolin, ellagic acid, jambosine, antimellin and betulinic acid. Jamun possess curative activities like anticancer, antidiabetic, antifertility, anti-inflammatory, antidiarrheal, antimicrobial, antinociceptive, antioxidant, antiradiation, chemotherapeutic, and gastroprotective. The main goal of this review article is to provide information on the nutritional content, phytochemical composition and health promoting properties of jamun leaves. The review of literature based on the phytochemical composition and health promoting benefits of the jamun leaves, suggests that leaves can be used as potential constituent in the formulation of pharmacological drugs. From the review literature it is found that clinical, in-vivo, in-vitro studies are still required to check the health promoting effects of jamun leaves extracts on humans.


Subject(s)
Syzygium , Humans , Antioxidants/pharmacology , Betulinic Acid , Flavonoids , Gallic Acid
2.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36142805

ABSTRACT

Aegle marmelos (L.) Correa (Bael) fruit, a member of the Rutaceae family, is a major cultivated fruit plant in tropical and subtropical regions in countries of southeast Asia. Bael fruit has been a major topic for studies in recent years mainly due to its high nutritional (carbohydrates, proteins, minerals, and vitamins) value and presence of various phytochemicals, which attributed to its high medicinal value. These phytochemicals include various compounds, e.g., alkaloids, flavonoids, and phenolic acids (protocatechuic acid, gallic, and ellagic acid). The fruit extract of bael has been also an important study area for its pharmacological activities, including antidiarrheal, antioxidant, antidiabetic, hepatoprotective, radioprotective, anticancer, antiulcer properties. The current review mainly highlighted the nutritional and pharmacological activities of bael fruit. The nutritional profile and phytochemical profile were discussed in the review, along with their concentration in the fruit. Moreover, the experiments carried out in vivo and in vitro of bael fruit extracts with respect to their pharmacological activities were also discussed in the article. The recent literature based on nutritional and pharmacological values of bael fruit showed its high potential as a food and pharmaceutical product. Despite having high nutritional and pharmacological value, research related to molecular mechanisms of bael fruit is still limited, and clinical trials are needed to ensure its safety as a product in the food and pharma industries.


Subject(s)
Aegle , Alkaloids , Rutaceae , Aegle/chemistry , Antidiarrheals , Antioxidants/pharmacology , Carbohydrates , Dietary Supplements , Ellagic Acid , Flavonoids , Fruit , Hypoglycemic Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Vitamins
3.
Int J Biol Macromol ; 229: 463-475, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36563821

ABSTRACT

Human awareness of the need for health and wellness practices that enhance disease resilience has increased as a result of recent health risks. Plant-derived polysaccharides with biological activity are good candidates to fight diseases because of their low toxicity. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides extract from different plant parts have been reported to possess significant biological activity such as anti-oxidant, anti-cancer, immunomodulatory, anti-diabetic, radioprotective and hepatoprotective. Several extraction and purification techniques have been used to isolate and characterize T. cordifolia polysaccharides. Along with hot-water extraction (HWE), other novel techniques like microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF), supercritical-fluid extraction (SFE), and enzyme-assisted extraction (EAE) are used to extract T cordifolia polysaccharides. SFE is a revolutionary technology that gives the best yield and purity of low-molecular-weight polysaccharides. According to the findings, polysaccharides extracted and purified from T. cordifolia have a significant impact on their structure and biological activity. As a result, the methods of extraction, structural characterization, and biological activity of T. cordifolia polysaccharides are covered in this review. Research on T. cordifolia polysaccharides and their potential applications will benefit greatly from the findings presented in this review.


Subject(s)
Tinospora , Humans , Tinospora/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Polysaccharides/pharmacology
4.
Heliyon ; 9(10): e20232, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860517

ABSTRACT

Chrysanthemum is a flowering plant belonging to a genus of the dicotyledonous herbaceous annual flowering plant of the Asteraceae (Compositae) family. It is a perpetual flowering plant, mostly cultivated for medicinal purposes; generally, used in popular drinks due to its aroma and flavor. It is primarily cultivated in China, Japan, Europe, and United States. These flowers were extensively used in various healthcare systems and for treating various diseases. Chrysanthemum flowers are rich in phenolic compounds and exhibit strong properties including antioxidant, antimicrobial, anti-inflammatory, anticancer, anti-allergic, anti-obesity, immune regulation, hepatoprotective, and nephroprotective activities. The main aim of the present review was to investigate the nutritional profile, phytochemistry, and biological activities of flowers of different Chrysanthemum species. Also, a critical discussion of the diverse metabolites or bioactive constituents of the Chrysanthemum flowers is highlighted in the present review. Moreover, the flower extracts of Chrysanthemum have been assessed to possess a rich phytochemical profile, including compounds such as cyanidin-3-O-(6″-O-malonyl) glucoside, delphinidin 3-O-(6" -O-malonyl) glucoside-3', rutin, quercetin, isorhamnetin, rutinoside, and others. These profiles exhibit potential health benefits, leading to their utilization in the production of supplementary food products and pharmaceutical drugs within the industry. However, more comprehensive research studies/investigations are still needed to further discover the potential benefits for human and animal utilization.

5.
Plants (Basel) ; 11(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36432824

ABSTRACT

With the advent of pandemics and infectious diseases, numerous research activities on natural products have been carried out to combat them. Researchers are investigating natural products for the treatment and/or management of various infectious diseases and/or disorders. Acacia catechu (L.f.) Willd. belongs to the family Fabaceae (subfamily Mimosoideae) known as Khair or Cutch tree, possesses diverse pharmacological actions, and has been widely used in Asia and different parts of the world. The purpose of the present study is to highlight the phytochemical profile of different parts of A. catechu, the different biological activities of A. catechu extract, and the utilization of A. catechu as food and beverage. The present work constitutes a review of A. catechu; we performed searches (books, Google, Google Scholar, and Scopus publications) to compile the work/investigations made on A. catechu to the present. From our survey, it was concluded that the main phytochemicals compounds in A. catechu are protocatechuic acid, taxifolin, epicatechin, epigallocatechin, catechin, epicatechin gallate, procyanidin, phloroglucin, aldobiuronic acid, gallic acid, D-galactose, afzelchin gum, L-arabinose, D-rhamnose, and quercetin. The whole plant of A. catechu possesses a comprehensive variety of medicinal potentials such as antimicrobial, antidiarrheal, antinociceptive, antihyperlipidemic, antiulcer, antioxidant, antidiabetic, antiproliferative, haemolytic, and anti-inflammatory properties due to the presence of bioactive compounds like flavonoids, alkaloids, and tannins. However, even though the plant's metabolites were reported to have many different pharmacological uses, there is limited information about their toxicity or clinical trials. Further research on diverse metabolites of A. catechu should be carried out to ensure the safety or utilization of this plant in the pharma or food industries and in the development of potent plant-based drugs.

6.
Int J Biol Macromol ; 219: 1047-1061, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35914557

ABSTRACT

Allium cepa (onion) and Allium sativum (garlic) are important members of the Amaryllidaceae (Alliaceae) family and are being used both as food and medicine for centuries in different parts of the world. Polysaccharides have been extracted from different parts of onion and garlic such as bulb, straw and cell wall. The current literature portrays several studies on the extraction of polysaccharides from onion and garlic, their modification and determination of their structural (molecular weight, monosaccharide unit and their arrangement, type and position of glycosidic bond or linkage, degree of polymerization, chain conformation) and functional properties (emulsifying property, moisture retention, hygroscopicity, thermal stability, foaming ability, fat-binding capacity). In this line, this review, summarizes the various extraction techniques used for polysaccharides from onion and garlic, involving methods like solvent extraction method. Furthermore, the antioxidant, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, and antidiabetic properties of onion and garlic polysaccharides as reported in in vivo and in vitro studies are also critically assessed in this review. Different studies have proved onion and garlic polysaccharides as potential antioxidant and immunomodulatory agent. Studies have implemented to improve the functionality of onion and garlic polysaccharides through various modification approaches. Further studies are warranted for utilizing onion and garlic polysaccharides in the food, nutraceutical, pharmaceutical and cosmetic industries.


Subject(s)
Anti-Infective Agents , Garlic , Antioxidants/pharmacology , Garlic/chemistry , Hypoglycemic Agents , Monosaccharides , Onions/chemistry , Pharmaceutical Preparations , Polysaccharides/chemistry , Polysaccharides/pharmacology , Solvents
7.
Cells ; 11(18)2022 09 07.
Article in English | MEDLINE | ID: mdl-36139367

ABSTRACT

Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.


Subject(s)
Mesenchymal Stem Cells , Stem Cells , Bone Marrow Cells , Mesenchymal Stem Cells/metabolism , Periodontal Ligament , Plant Extracts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL