Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
PLoS Pathog ; 18(10): e1010932, 2022 10.
Article in English | MEDLINE | ID: mdl-36306288

ABSTRACT

Members of the HtrA family of serine proteases are known to play roles in mitochondrial homeostasis as well as in programmed cell death. Mitochondrial homeostasis and metabolism are crucial for the survival and propagation of the malaria parasite within the host. Here we have functionally characterized a Plasmodium falciparum HtrA2 (PfHtrA2) protein, which harbours trypsin-like protease activity that can be inhibited by its specific inhibitor, ucf-101. A transgenic parasite line was generated, using the HA-glmS C-terminal tagging approach, for localization as well as for inducible knock-down of PfHtrA2. The PfHtrA2 was localized in the parasite mitochondrion during the asexual life cycle. Genetic ablation of PfHtrA2 caused significant parasite growth inhibition, decreased replication of mtDNA, increased mitochondrial ROS production, caused mitochondrial fission/fragmentation, and hindered parasite development. However, the ucf-101 treatment did not affect the parasite growth, suggesting the non-protease/chaperone role of PfHtrA2 in the parasite. Under cellular stress conditions, inhibition of PfHtrA2 by ucf-101 reduced activation of the caspase-like protease as well as parasite cell death, suggesting the involvement of protease activity of PfHtrA2 in apoptosis-like cell death in the parasite. Under these cellular stress conditions, the PfHtrA2 gets processed but remains localized in the mitochondrion, suggesting that it acts within the mitochondrion by cleaving intra-mitochondrial substrate(s). This was further supported by trans-expression of PfHtrA2 protease domain in the parasite cytosol, which was unable to induce any cell death in the parasite. Overall, we show the specific roles of PfHtrA2 in maintaining mitochondrial homeostasis as well as in regulating stress-induced cell death.


Subject(s)
Malaria , Parasites , Animals , Humans , High-Temperature Requirement A Serine Peptidase 2/genetics , High-Temperature Requirement A Serine Peptidase 2/metabolism , Parasites/metabolism , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Apoptosis , Cell Death , Homeostasis , Malaria/metabolism
2.
FASEB J ; 37(11): e23235, 2023 11.
Article in English | MEDLINE | ID: mdl-37819580

ABSTRACT

Metabolic pathways and proteins responsible for maintaining mitochondrial dynamics and homeostasis in the Plasmodium parasite, the causative agent of malaria, remain to be elucidated. Here, we identified and functionally characterized a novel OPA3-like domain-containing protein in P. falciparum (PfOPA3). We show that PfOPA3 is expressed in the intraerythrocytic stages of the parasite and localizes to the mitochondria. Inducible knock-down of PfOPA3 using GlmS ribozyme hindered the normal intraerythrocytic cycle of the parasites; specifically, PfOPA3-iKD disrupted parasite development as well as parasite division and segregation at schizont stages, which resulted in a drastic reduction in the number of merozoites progenies. Parasites lacking PfOPA3 show severe defects in the development of functional mitochondria; the mitochondria showed reduced activity of mtETC but not ATP synthesis, as evidenced by reduced activity of complex III of the mtETC, and increased sensitivity for drugs targeting DHODH as well as complex III, but not to the drugs targeting complex V. Further, PfOPA3 downregulation leads to reduction in the level of mitochondrial proton transport uncoupling protein (PfUCP) to compensate reduced activity of complex III and maintain proton efflux across the inner membrane. The reduced activity of DHODH, which is responsible for pyrimidine biosynthesis required for nuclear DNA synthesis, resulted in a significant reduction in parasite nuclear division and generation of progeny. In conclusion, we show that PfOPA3 is essential for the functioning of mtETC and homeostasis required for the development of functional mitochondria as well as for parasite segregation, and thus PfOPA3 is crucial for parasite survival during blood stages.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Parasites/metabolism , Dihydroorotate Dehydrogenase , Electron Transport Complex III/metabolism , Protons , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria, Falciparum/metabolism , Mitochondria/metabolism , Homeostasis , Cell Proliferation , Erythrocytes/metabolism
3.
Biochem J ; 480(1): 25-39, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36511651

ABSTRACT

Proteins associated with ubiquitin-proteasome system (UPS) are potential drug targets in the malaria parasite. The ubiquitination and deubiquitination are key regulatory processes for the functioning of UPS. In this study, we have characterized the biochemical and functional role of a novel ubiquitin-specific protease (USP) domain-containing protein of the human malaria parasite Plasmodium falciparum (PfUSP). We have shown that the PfUSP is an active deubiquitinase associated with parasite endoplasmic reticulum (ER). Selection linked integration (SLI) method for C-terminal tagging and GlmS-ribozyme mediated inducible knock-down (iKD) of PfUSP was utilized to assess its functional role. Inducible knockdown of PfUSP resulted in a remarkable reduction in parasite growth and multiplication; specifically, PfUSP-iKD disrupted ER morphology and development, blocked the development of healthy schizonts, and hindered proper merozoite development. PfUSP-iKD caused increased ubiquitylation of specific proteins, disrupted organelle homeostasis and reduced parasite survival. Since the mode of action of artemisinin and the artemisinin-resistance are shown to be associated with the proteasome machinery, we analyzed the effect of dihydroartemisinin (DHA) on PfUSP-iKD parasites. Importantly, the PfUSP-knocked-down parasite showed increased sensitivity to dihydroartemisinin (DHA), whereas no change in chloroquine sensitivity was observed, suggesting a role of PfUSP in combating artemisinin-induced cellular stress. Together, the results show that Plasmodium PfUSP is an essential protease for parasite survival, and its inhibition increases the efficacy of artemisinin-based drugs. Therefore, PfUSP can be targeted to develop novel scaffolds for developing new antimalarials to combat artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria , Parasites , Humans , Animals , Plasmodium falciparum/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology , Artemisinins/pharmacology , Artemisinins/metabolism , Antimalarials/chemistry , Ubiquitin/genetics , Ubiquitin/metabolism , Drug Resistance/genetics
4.
PLoS Pathog ; 17(7): e1009750, 2021 07.
Article in English | MEDLINE | ID: mdl-34324609

ABSTRACT

The human malaria parasite, Plasmodium falciparum possesses unique gliding machinery referred to as the glideosome that powers its entry into the insect and vertebrate hosts. Several parasite proteins including Photosensitized INA-labelled protein 1 (PhIL1) have been shown to associate with glideosome machinery. Here we describe a novel PhIL1 associated protein complex that co-exists with the glideosome motor complex in the inner membrane complex of the merozoite. Using an experimental genetics approach, we characterized the role(s) of three proteins associated with PhIL1: a glideosome associated protein- PfGAPM2, an IMC structural protein- PfALV5, and an uncharacterized protein-referred here as PfPhIP (PhIL1 Interacting Protein). Parasites lacking PfPhIP or PfGAPM2 were unable to invade host RBCs. Additionally, the downregulation of PfPhIP resulted in significant defects in merozoite segmentation. Furthermore, the PfPhIP and PfGAPM2 depleted parasites showed abrogation of reorientation/gliding. However, initial attachment with host RBCs was not affected in these parasites. Together, the data presented here show that proteins of the PhIL1-associated complex play an important role in the orientation of P. falciparum merozoites following initial attachment, which is crucial for the formation of a tight junction and hence invasion of host erythrocytes.


Subject(s)
Erythrocytes/parasitology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Merozoites/metabolism , Protozoan Proteins/metabolism , Humans
5.
Biochem J ; 478(18): 3429-3444, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34133721

ABSTRACT

Phospholipid synthesis is crucial for membrane proliferation in malaria parasites during the entire cycle in the host cell. The major phospholipid of parasite membranes, phosphatidylcholine (PC), is mainly synthesized through the Kennedy pathway. The phosphocholine required for this synthetic pathway is generated by phosphorylation of choline derived from the catabolism of the lyso-phosphatidylcholine (LPC) scavenged from the host milieu. Here we have characterized a Plasmodium falciparum lysophospholipase (PfLPL20) which showed enzymatic activity on LPC substrate to generate choline. Using GFP- targeting approach, PfLPL20 was localized in vesicular structures associated with the neutral lipid storage bodies present juxtaposed to the food-vacuole. The C-terminal tagged glmS mediated inducible knock-down of PfLPL20 caused transient hindrance in the parasite development, however, the parasites were able to multiply efficiently, suggesting that PfLPL20 is not essential for the parasite. However, in PfLPL20 depleted parasites, transcript levels of enzyme of SDPM pathway (Serine Decarboxylase-Phosphoethanolamine Methyltransferase) were altered along with up-regulation of phosphocholine and SAM levels; these results show up-regulation of alternate pathway to generate the phosphocholine required for PC synthesis through the Kennedy pathway. Our study highlights the presence of alternate pathways for lipid homeostasis/membrane-biogenesis in the parasite; these data could be useful to design future therapeutic approaches targeting phospholipid metabolism in the parasite.


Subject(s)
Erythrocytes/metabolism , Lysophospholipase/genetics , Phosphatidylcholines/biosynthesis , Phosphorylcholine/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Choline/metabolism , Erythrocytes/parasitology , Gene Expression Regulation , Gene Knockdown Techniques , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeostasis/genetics , Humans , Life Cycle Stages/genetics , Lipid Metabolism/genetics , Lysophosphatidylcholines/metabolism , Lysophospholipase/deficiency , Methyltransferases/genetics , Methyltransferases/metabolism , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , S-Adenosylmethionine/metabolism , Serine/metabolism
6.
BMC Biol ; 19(1): 159, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34380472

ABSTRACT

BACKGROUND: Plasmodium falciparum is the pathogen responsible for the most devastating form of human malaria. As it replicates asexually in the erythrocytes of its human host, the parasite feeds on haemoglobin uptaken from these cells. Heme, a toxic by-product of haemoglobin utilization by the parasite, is neutralized into inert hemozoin in the food vacuole of the parasite. Lipid homeostasis and phospholipid metabolism are crucial for this process, as well as for the parasite's survival and propagation within the host. P. falciparum harbours a uniquely large family of phospholipases, which are suggested to play key roles in lipid metabolism and utilization. RESULTS: Here, we show that one of the parasite phospholipase (P. falciparum lysophospholipase, PfLPL1) plays an essential role in lipid homeostasis linked with the haemoglobin degradation and heme conversion pathway. Fluorescence tagging showed that the PfLPL1 in infected blood cells localizes to dynamic vesicular structures that traffic from the host-parasite interface at the parasite periphery, through the cytosol, to get incorporated into a large vesicular lipid rich body next to the food-vacuole. PfLPL1 is shown to harbour enzymatic activity to catabolize phospholipids, and its transient downregulation in the parasite caused a significant reduction of neutral lipids in the food vacuole-associated lipid bodies. This hindered the conversion of heme, originating from host haemoglobin, into the hemozoin, and disrupted the parasite development cycle and parasite growth. Detailed lipidomic analyses of inducible knock-down parasites deciphered the functional role of PfLPL1 in generation of neutral lipid through recycling of phospholipids. Further, exogenous fatty-acids were able to complement downregulation of PfLPL1 to rescue the parasite growth as well as restore hemozoin levels. CONCLUSIONS: We found that the transient downregulation of PfLPL1 in the parasite disrupted lipid homeostasis and caused a reduction in neutral lipids essentially required for heme to hemozoin conversion. Our study suggests a crucial link between phospholipid catabolism and generation of neutral lipids (TAGs) with the host haemoglobin degradation pathway.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Erythrocytes , Heme , Hemeproteins , Humans , Phospholipases , Phospholipids
7.
Bioorg Chem ; 108: 104514, 2021 03.
Article in English | MEDLINE | ID: mdl-33280833

ABSTRACT

Targeting Falcipain-2 (FP2) for the development of antimalarials is a promising and established concept in antimalarial drug discovery and development. FP2, a member of papain-family cysteine protease of the malaria parasite Plasmodium falciparum holds an important role in hemoglobin degradation pathway. A new series of quinoline carboxamide-based compounds was designed, synthesized and evaluated for antimalarial activity. We integrated molecular hybridization strategy with in-silico drug design to develop FP2 inhibitors. In-vitro results of FP2 inhibition by Qs17, Qs18, Qs20 and Qs21 were found to be in low micromolar range with IC50 4.78, 7.37, 2.14 and 2.64 µM, respectively. Among the 25 synthesized compounds, four compounds showed significant antimalarial activities. These compounds also depicted morphological and food-vacuole abnormalities much better than that of E-64, an established FP2 inhibitor. Overall these aromatic substituted quinoline carboxamides can serve as promising leads for the development of novel antimalarial agents.


Subject(s)
Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Drug Design , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dose-Response Relationship, Drug , Malaria, Falciparum/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
8.
Infect Immun ; 88(2)2020 01 22.
Article in English | MEDLINE | ID: mdl-31712270

ABSTRACT

Cytoadherence-linked asexual gene 9 (Clag9), a conserved Plasmodium protein expressed during the asexual blood stages, is involved in the cytoadherence of infected red blood cells (RBCs) to the endothelial lining of blood vessels. Here, we show that Plasmodium falciparum Clag9 (PfClag9) is a component of the PfClag9-RhopH complex that is involved in merozoite binding to human erythrocytes. To characterize PfClag9, we expressed four fragments of PfClag9, encompassing the entire protein. Immunostaining analysis using anti-PfClag9 antibodies showed expression and localization of PfClag9 at the apical end of the merozoites. Mass spectrometric analysis of merozoite extracts after immunoprecipitation using anti-PfClag9 antibody identified P. falciparum rhoptry-associated protein 1 (PfRAP1), PfRAP2, PfRAP3, PfRhopH2, and PfRhopH3 as associated proteins. The identified rhoptry proteins were expressed, and their association with PfClag9 domains was assessed by using protein-protein interaction tools. We further showed that PfClag9 binds human RBCs by interacting with the glycophorin A-band 3 receptor-coreceptor complex. In agreement with its cellular localization, PfClag9 was strongly recognized by antibodies generated during natural infection. Mice immunized with the C-terminal domain of PfClag9 were partially protected against a subsequent challenge infection with Plasmodium berghei, further supporting a biological role of PfClag9 during natural infection. Taken together, these results provide direct evidence for the existence of a PfRhopH-Clag9 complex on the Plasmodium merozoite surface that binds to human RBCs.


Subject(s)
Cell Adhesion Molecules/immunology , Erythrocytes/immunology , Merozoites/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Humans , Malaria, Falciparum/immunology , Mice , Mice, Inbred BALB C , Plasmodium berghei/immunology , Protein Interaction Maps/immunology
9.
Bioorg Med Chem ; 28(1): 115155, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31744777

ABSTRACT

Falcipains (FPs), cysteine proteases in the malarial parasite, are emerging as the promising antimalarial drug targets. In order to identify novel FP inhibitors, we generated a pharmacophore derived from the reported co-crystal structures of inhibitors of Plasmodium falciparum Falcipain-3 to screen the ZINC library. Further, the filters were applied for dock score, drug-like characters, and clustering of similar structures. Sixteen molecules were purchased and subject to in vitro enzyme (FP-2 and FP-3) inhibition assays. Two compounds showed in vitro inhibition of FP-2 and FP-3 at low µM concentration. The selectivity of the inhibitors can be explained based on the predicted interactions of the molecule in the active site. Further, the inhibitors were evaluated in a functional assay and were found to induce morphological changes in line with their mode of action arresting Plasmodium development. Compound 15 was most potent inhibitor identified in this study.


Subject(s)
Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Enzyme Inhibitors/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Structure-Activity Relationship
10.
J Biol Chem ; 293(25): 9736-9746, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29716996

ABSTRACT

The human malaria parasite Plasmodium falciparum proliferates in red blood cells following repeated cycles of invasion, multiplication, and egress. P. falciparum serine repeat antigen 5 (PfSERA5), a putative serine protease, plays an important role in merozoite egress. However, regulation of its activity leading to merozoite egress is poorly understood. In this study, we show that PfSERA5 undergoes phosphorylation prior to merozoite egress. Immunoprecipitation of parasite lysates using anti-PfSERA5 serum followed by MS analysis identified calcium-dependent protein kinase 1 (PfCDPK1) as an interacting kinase. Association of PfSERA5 with PfCDPK1 was corroborated by co-sedimentation, co-immunoprecipitation, and co-immunolocalization analyses. Interestingly, PfCDPK1 phosphorylated PfSERA5 in vitro in the presence of Ca2+ and enhanced its proteolytic activity. A PfCDPK1 inhibitor, purfalcamine, blocked the phosphorylation and activation of PfSERA5 both in vitroas well as in schizonts, which, in turn, blocked merozoite egress. Together, these results suggest that phosphorylation of PfSERA5 by PfCDPK1 following a rise in cytosolic Ca2+ levels activates its proteolytic activity to trigger merozoite egress.


Subject(s)
Antigens, Protozoan/metabolism , Calcium/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Merozoites/physiology , Plasmodium falciparum/pathogenicity , Animals , Erythrocytes/pathology , Humans , Phosphorylation , Proteolysis , Serine/metabolism
11.
BMC Genomics ; 20(1): 98, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30704415

ABSTRACT

BACKGROUND: Protein secretion is an essential process in all eukaryotes including organisms belonging to the phylum Apicomplexa, which includes many intracellular parasites. The apicomplexan parasites possess a specialized collection of secretory organelles that release a number of proteins to facilitate the invasion of host cells and some of these proteins also participate in immune evasion. Like in other eukaryotes, these parasites possess a series of membrane-bound compartments, namely the endoplasmic reticulum (ER), the intermediate compartments (IC) or vesicular tubular clusters (VTS) and Golgi complex through which proteins pass in a sequential and vectorial fashion. Two sets of proteins; COPI and COPII are important for directing the sequential transfer of material between the ER and Golgi complex. RESULTS: Here, using in silico approaches, we identify the components of COPI and COPII complexes in the genome of apicomplexan organisms. The results showed that the COPI and COPII protein complexes are conserved in most apicomplexan genomes with few exceptions. Diversity among the components of COPI and COPII complexes in apicomplexan is either due to the absence of a subunit or due to the difference in the number of protein domains. For example, the COPI epsilon subunit and COPII sec13 subunit is absent in Babesia bovis, Theileria parva, and Theileria annulata genomes. Phylogenetic and domain analyses for all the proteins of COPI and COPII complexes was performed to predict their evolutionary relationship and functional significance. CONCLUSIONS: The study thus provides insights into the apicomplexan COPI and COPII coating machinery, which is crucial for parasites secretory network needed for the invasion of host cells.


Subject(s)
Apicomplexa/metabolism , Coat Protein Complex I/metabolism , Evolution, Molecular , Genome, Protozoan , Protozoan Infections/parasitology , Protozoan Proteins/metabolism , Apicomplexa/genetics , Apicomplexa/isolation & purification , Coat Protein Complex I/genetics , Humans , Molecular Sequence Annotation , Phylogeny , Protein Interaction Domains and Motifs , Protein Subunits , Protein Transport , Protozoan Infections/genetics , Protozoan Infections/metabolism , Protozoan Proteins/genetics
12.
Biochem J ; 475(6): 1197-1209, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29511044

ABSTRACT

Plasmodium falciparum merozoite surface protein (PfMSP) 1 has been studied extensively as a vaccine candidate antigen. PfMSP-1 undergoes proteolytic processing into four major products, such as p83, p30, p38, and p42, that are associated in the form of non-covalent complex(s) with other MSPs. To delineate MSP1 regions involved in the interaction with other MSPs, here we expressed recombinant proteins (PfMSP-165) encompassing part of p38 and p42 regions and PfMSP-119 PfMSP-165 interacted strongly with PfMSP-3, PfMSP-6, PfMSP-7, and PfMSP-9, whereas PfMSP-119 did not interact with any of these proteins. Since MSP-1 complex binds human erythrocytes, we examined the ability of these proteins to bind human erythrocyte. Among the proteins of MSP-1 complex, PfMSP-6 and PfMSP-9 bound to human erythrocytes. Serological studies showed that PfMSP-165 was frequently recognized by sera from malaria endemic regions, whereas this was not the case for PfMSP-119 In contrast, antibodies against PfMSP-119 showed much higher inhibition of merozoite invasion compared with antibodies against the larger PfMSP-165 fragment. Importantly, anti-PfMSP-119 antibodies recognized both recombinant proteins, PfMSP-119 and PfMSP-165; however, anti-PfMSP-165 antibody failed to recognize the PfMSP-119 protein. Taken together, these results demonstrate that PfMSP-1 sequences upstream of the 19 kDa C-terminal region are involved in molecular interactions with other MSPs, and these sequences may probably serve as a smoke screen to evade antibody response to the membrane-bound C-terminal 19 kDa region.


Subject(s)
Erythrocytes/metabolism , Host-Parasite Interactions , Merozoite Surface Protein 1/metabolism , Multiprotein Complexes/metabolism , Plasmodium falciparum , Animals , Cells, Cultured , Female , Host-Parasite Interactions/genetics , Humans , Merozoite Surface Protein 1/chemistry , Merozoite Surface Protein 1/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Interaction Maps , Rabbits
13.
Biochem J ; 475(17): 2877-2891, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30049893

ABSTRACT

Complement system is the first line of human defence against intruding pathogens and is recognized as a potentially useful therapeutic target. Human malaria parasite Plasmodium employs a series of intricate mechanisms that enables it to evade different arms of immune system, including the complement system. Here, we show the expression of a multi-domain Plasmodium Complement Control Protein 1, PfCCp1 at asexual blood stages and its binding affinity with C3b as well as C4b proteins of human complement cascade. Using a biochemical assay, we demonstrate that PfCCp1 binds with complement factors and inhibits complement activation. Active immunization of mice with PfCCp1 followed by challenge with Plasmodium berghei resulted in the loss of biphasic growth of parasites and early death in comparison to the control group. The study also showed a role of PfCCp1 in modulating Toll-like receptor (TLR)-mediated signalling and effector responses on antigen-presenting cells. PfCCp1 binds with dendritic cells that down-regulates the expression of signalling molecules and pro-inflammatory cytokines, thereby dampening the TLR2-mediated signalling; hence acting as a potent immuno-modulator. In summary, PfCCp1 appears to be an important component of malaria parasite directed immuno-modulating strategies that promote the adaptive fitness of pathogens in the host.


Subject(s)
Dendritic Cells/immunology , Immunologic Factors/immunology , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Signal Transduction/immunology , Animals , Humans , Immunization , Mice , Mice, Inbred BALB C , Toll-Like Receptor 2/immunology
14.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29760216

ABSTRACT

Plasmodium falciparum merozoite surface protein 3 (MSP3) is an abundantly expressed secreted merozoite surface protein and a leading malaria vaccine candidate antigen. However, it is unclear how MSP3 is retained on the surface of merozoites without a glycosylphosphatidylinositol (GPI) anchor or a transmembrane domain. In the present study, we identified an MSP3-associated network on the Plasmodium merozoite surface by immunoprecipitation of Plasmodium merozoite lysate using antibody to the N terminus of MSP3 (anti-MSP3N) followed by mass spectrometry analysis. The results suggested the association of MSP3 with other merozoite surface proteins: MSP1, MSP6, MSP7, RAP2, and SERA5. Protein-protein interaction studies by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) analysis showed that MSP3 complex consists of MSP1, MSP6, and MSP7 proteins. Immunological characterization of MSP3 revealed that MSP3N is strongly recognized by hyperimmune serum from African and Asian populations. Furthermore, we demonstrate that human antibodies, affinity purified against recombinant MSP3N (rMSP3N), promote opsonic phagocytosis of merozoites in cooperation with monocytes. At nonphysiological concentrations, anti-MSP3N antibodies inhibited the growth of P. falciparum in vitro Together, the data suggest that MSP3 and especially its N-terminal region containing known B/T cell epitopes are targets of naturally acquired immunity against malaria and also comprise an important candidate for a multisubunit malaria vaccine.


Subject(s)
Antigens, Protozoan/analysis , Antigens, Protozoan/immunology , Membrane Proteins/analysis , Membrane Proteins/immunology , Merozoites/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/analysis , Protozoan Proteins/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antibody Formation , Antigens, Protozoan/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Immunoprecipitation , Malaria, Falciparum/immunology , Mass Spectrometry , Membrane Proteins/metabolism , Merozoites/chemistry , Monocytes/immunology , Opsonin Proteins/blood , Opsonin Proteins/immunology , Phagocytosis , Plasmodium falciparum/chemistry , Plasmodium falciparum/growth & development , Protein Interaction Maps , Protein Multimerization , Protozoan Proteins/metabolism , Surface Plasmon Resonance
15.
Cell Microbiol ; 19(9)2017 09.
Article in English | MEDLINE | ID: mdl-28423214

ABSTRACT

The metabolic pathways associated with the mitochondrion and the apicoplast in Plasmodium, 2 parasite organelles of prokaryotic origin, are considered as suitable drug targets. In the present study, we have identified functional role of a novel ovarian tumour unit (OTU) domain-containing cysteine protease of Plasmodium falciparum (PfOTU). A C-terminal regulatable fluorescent affinity tag on native protein was utilised for its localization and functional characterization. Detailed studies showed vesicular localization of PfOTU and its association with the apicoplast. Degradation-tag mediated knockdown of PfOTU resulted in abnormal apicoplast development and blocked development of parasites beyond early-schizont stages in subsequent cell cycle; downregulation of PfOTU hindered apicoplast protein import. Further, the isoprenoid precursor-mediated parasite growth-rescue experiments confirmed that PfOTU knockdown specifically effect development of functional apicoplast. We also provide evidence for a possible biological function of PfOTU in membrane deconjugation of Atg8, which may be linked with the apicoplast protein import. Overall, our results show that the PfOTU is involved in apicoplast homeostasis and associates with the noncanonical function of Atg8 in maintenance of parasite apicoplast.


Subject(s)
Apicoplasts/metabolism , Autophagy-Related Protein 8 Family/metabolism , Cysteine Proteases/metabolism , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism , Animals , Animals, Genetically Modified/genetics , Cysteine Proteases/genetics , Female , Green Fluorescent Proteins/genetics , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Protein Transport/genetics , Rabbits
16.
J Proteome Res ; 16(2): 368-383, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27933903

ABSTRACT

Plasmodium falciparum undergoes a tightly regulated developmental process in human erythrocytes, and recent studies suggest an important regulatory role of post-translational modifications (PTMs). As compared with Plasmodium phosphoproteome, little is known about other PTMs in the parasite. In the present study, we performed a global analysis of asexual blood stages of Plasmodium falciparum to identify arginine-methylated proteins. Using two different methyl arginine-specific antibodies, we immunoprecipitated the arginine-methylated proteins from the stage-specific parasite lysates and identified 843 putative arginine-methylated proteins by LC-MS/MS. Motif analysis of the protein sequences unveiled that the methylation sites are associated with the previously known methylation motifs such as GRx/RGx, RxG, GxxR, or WxxxR. We identified Plasmodium homologues of known arginine-methylated proteins in trypanosomes, yeast, and human. Hydrophilic interaction liquid chromatography (HILIC) was performed on the immunoprecipitates from the trophozoite stage to enrich arginine-methylated peptides. Mass spectrometry analysis of immunoprecipitated and HILIC fractions identified 55 arginine-methylated peptides having 62 methylated arginine sites. Functional classification revealed that the arginine-methylated proteins are involved in RNA metabolism, protein synthesis, intracellular protein trafficking, proteolysis, protein folding, chromatin organization, hemoglobin metabolic process, and several other functions. Summarily, the findings suggest that protein methylation of arginine residues is a widespread phenomenon in Plasmodium, and the PTM may play an important regulatory role in a diverse set of biological pathways, including host-pathogen interactions.


Subject(s)
Arginine/metabolism , Metabolic Networks and Pathways/genetics , Plasmodium falciparum/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Chromatography, Liquid , Erythrocytes/parasitology , Gene Ontology , Host-Pathogen Interactions , Humans , Hydrophobic and Hydrophilic Interactions , Immunoprecipitation , Life Cycle Stages/genetics , Methylation , Molecular Sequence Annotation , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Proteome/genetics , Proteomics/methods , Protozoan Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid
17.
Malar J ; 16(1): 79, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28202027

ABSTRACT

BACKGROUND: The Plasmodium genome encodes for a number of 6-Cys proteins that contain a module of six cysteine residues forming three intramolecular disulphide bonds. These proteins have been well characterized at transmission as well as hepatic stages of the parasite life cycle. In the present study, a large complex of 6-Cys proteins: Pfs41, Pfs38 and Pfs12 and three other merozoite surface proteins: Glutamate-rich protein (GLURP), SERA5 and MSP-1 were identified on the Plasmodium falciparum merozoite surface. METHODS: Recombinant 6-cys proteins i.e. Pfs38, Pfs12, Pfs41 as well as PfMSP-165 were expressed and purified using Escherichia coli expression system and antibodies were raised against each of these proteins. These antibodies were used to immunoprecipitate the native proteins and their associated partners from parasite lysate. ELISA, Far western, surface plasmon resonance and glycerol density gradient fractionation were carried out to confirm the respective interactions. Furthermore, erythrocyte binding assay with 6-cys proteins were undertaken to find out their possible role in host-parasite infection and seropositivity was assessed using Indian and Liberian sera. RESULTS: Immunoprecipitation of parasite-derived polypeptides, followed by LC-MS/MS analysis, identified a large Pfs38 complex comprising of 6-cys proteins: Pfs41, Pfs38, Pfs12 and other merozoite surface proteins: GLURP, SERA5 and MSP-1. The existence of such a complex was further corroborated by several protein-protein interaction tools, co-localization and co-sedimentation analysis. Pfs38 protein of Pfs38 complex binds to host red blood cells (RBCs) directly via glycophorin A as a receptor. Seroprevalence analysis showed that of the six antigens, prevalence varied from 40 to 99%, being generally highest for MSP-165 and GLURP proteins. CONCLUSIONS: Together the data show the presence of a large Pfs38 protein-associated complex on the parasite surface which is involved in RBC binding. These results highlight the complex molecular interactions among the P. falciparum merozoite surface proteins and advocate the development of a multi-sub-unit malaria vaccine based on some of these protein complexes on merozoite surface.


Subject(s)
Antigens, Protozoan/analysis , Membrane Proteins/analysis , Merozoites/chemistry , Plasmodium falciparum/chemistry , Protozoan Proteins/analysis , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , India , Liberia , Membrane Proteins/genetics , Membrane Proteins/immunology , Merozoites/immunology , Plasmodium falciparum/immunology , Protein Interaction Mapping , Protein Multimerization , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Seroepidemiologic Studies
18.
Bioorg Med Chem ; 25(20): 5662-5677, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28917450

ABSTRACT

The prokaryotic ATP-dependent ClpP protease, localized in the relict plastid of malaria parasite, represents a potential drug target. In the present study, we utilized in silico structure-based screening and medicinal chemistry approaches to identify a novel pyrimidine series of compounds inhibiting P. falciparum ClpP protease activity and evaluated their antiparasitic activities. Structure-activity relationship indicated that morpholine moiety at C2, an aromatic substitution at N3 and a 4-oxo moiety on the pyrimidine are important for potent inhibition of ClpP enzyme along with antiparasiticidal activity. Compound 33 exhibited potent antiparasitic activity (EC50 9.0±0.2µM), a 9-fold improvement over the antiparasitic activity of the hit molecule 6. Treatment of blood stage P. falciparum cultures with compound 33 caused morphological and developmental abnormalities in the parasites; further, compound 33 treatment hindered apicoplast development indicating the targeting of apicoplast.


Subject(s)
Antimalarials/chemical synthesis , Endopeptidase Clp/antagonists & inhibitors , Plasmodium/drug effects , Plasmodium/enzymology , Antimalarials/chemistry , Antimalarials/pharmacology , Apicoplasts/drug effects , Catalytic Domain , Humans , Inhibitory Concentration 50 , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Structure-Activity Relationship
19.
Biochim Biophys Acta ; 1853(11 Pt A): 2856-69, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26284889

ABSTRACT

The human malaria parasite, Plasmodium falciparum, takes up numerous host cytosolic components and exogenous nutrients through endocytosis during the intra-erythrocytic stages. Eps15 homology domain-containing proteins (EHDs) are conserved NTPases, which are implicated in membrane remodeling and regulation of specific endocytic transport steps in eukaryotic cells. In the present study, we have characterized the dynamin-like C-terminal Eps15 homology domain containing protein of P. falciparum (PfEHD). Using a GFP-targeting approach, we studied localization and trafficking of PfEHD in the parasite. The PfEHD-GFP fusion protein was found to be a membrane bound protein that associates with vesicular network in the parasite. Time-lapse microscopy studies showed that these vesicles originate at parasite plasma membrane, migrate through the parasite cytosol and culminate into a large multi-vesicular like structure near the food-vacuole. Co-staining of food vacuole membrane showed that the multi-vesicular structure is juxtaposed but outside the food vacuole. Labeling of parasites with neutral lipid specific dye, Nile Red, showed that this large structure is neutral lipid storage site in the parasites. Proteomic analysis identified endocytosis modulators as PfEHD associated proteins in the parasites. Treatment of parasites with endocytosis inhibitors obstructed the development of PfEHD-labeled vesicles and blocked their targeting to the lipid storage site. Overall, our data suggests that the PfEHD is involved in endocytosis and plays a role in the generation of endocytic vesicles at the parasite plasma membrane, that are subsequently targeted to the neutral lipid generation/storage site localized near the food vacuole.


Subject(s)
Endocytosis/physiology , Lipid Metabolism/physiology , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
20.
Biochim Biophys Acta ; 1853(3): 699-710, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25573429

ABSTRACT

The human malaria parasite Plasmodium falciparum possesses sophisticated systems of protein secretion to modulate host cell invasion and remodeling. In the present study, we provide insights into the function of the AP-1 complex in P. falciparum. We utilized GFP fusion constructs for live cell imaging, as well as fixed parasites in immunofluorescence analysis, to study adaptor protein mu1 (Pfµ1) mediated protein trafficking in P. falciparum. In trophozoites Pfµ1 showed similar dynamic localization to that of several Golgi/ER markers, indicating Golgi/ER localization. Treatment of transgenic parasites with Brefeldin A altered the localization of Golgi-associated Pfµ1, supporting the localization studies. Co-localization studies showed considerable overlap of Pfµ1 with the resident rhoptry proteins, rhoptry associated protein 1 (RAP1) and Cytoadherence linked asexual gene 3.1 (Clag3.1) in schizont stage. Immunoprecipitation experiments with Pfµ1 and PfRAP1 revealed an interaction, which may be mediated through an intermediate transmembrane cargo receptor. A specific role for Pfµ1 in trafficking was suggested by treatment with AlF4, which resulted in a shift to a predominantly ER-associated compartment and consequent decrease in co-localization with the Golgi marker GRASP. Together, these results suggest a role for the AP-1 complex in rhoptry protein trafficking in P. falciparum.


Subject(s)
Adaptor Protein Complex 1/physiology , Membrane Proteins/metabolism , Organelles/metabolism , Plasmodium falciparum/metabolism , Cells, Cultured , Erythrocytes/parasitology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Organisms, Genetically Modified , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protein Transport/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL