Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Talanta ; 277: 126252, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38805948

ABSTRACT

COVID-19 as an infectious disease with rapid transmission speed is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), so, early and accurate diagnostics of COVID-19 is quite challenging. In this work, the selective and sensitive self-enhanced ECL method to detect of SARS-CoV-2 protein was designed with magnetic N-doped carbon derived from dual-ligand metal-organic frameworks (MOF) (CoO@N-C) with the primary and tertiary amino groups as a novel coreactant that covalently combined with Ru(bpy)2(phen-NH2)2+ as electrochemiluminescence (ECL) emitter. Mixed-ligand strategy and selected nitrogen-containing ligands, 4,4',4''-((1,3,5-triazine-2,4,6-triyl) tris-(azanediyl)) tribenzoic acid (H3TATAB) with 2-aminoterephthalic acid (BDC-NH2) were used for synthesis of the proposed MOF. Also, magnetic CoO@N-C with high synergistically charge transfer kinetics and good stability can be used as an effective platform/coreactor on the ITO electrode which load more Ru-complex as signal producing compound and SARS-CoV-2 N protein antibody to increase the sensitivity of the immunosensor. Furthermore, (CoO@N-C) as coreactor improved the ECL signal of the Ru (II)-complex more than 2.1 folds compared to tripropylamine. In view of these competences, the novel "on-off" ECL biosensor performed with great stability and repeatability for detection of SARS-CoV-2 protein, which exhibited a broad linearity from 8 fg. mL-1 to 4 ng. mL-1 (6 order of magnitude) and an ultra-low limit of detection 1.6 fg. mL-1. Finally, this proposed method was successfully applied to detect of SARS-CoV-2 N protein in serum sample with satisfactory results, indicating the proposed immunosensor has the potential for quick analysis of SARS-CoV-2.

2.
Dalton Trans ; 52(11): 3472-3481, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36843449

ABSTRACT

We report a joint experimental and theoretical study of RuO2/TiO2 heterostructures. In the experimental section, mesoporous RuO2/TiO2 heterostructures were prepared by impregnation of mesoporous TiO2 nanoparticles which were synthesized from a new precursor, Na2[Ti(C2O4)3], in an aqueous solution of ruthenium(III) chloride followed by calcination at 300 °C. Using various techniques, the prepared TiO2 and RuO2/TiO2 heterostructures were extensively characterized. The photoelectocatalytic application of the as-prepared heterostructures was then investigated toward the hydrogen evolution reaction (HER). The results illustrated that RuO2 is dispersed uniformly on the TiO2 surface. The loading of RuO2 on TiO2 decreases the band gap energy and extends the absorption edge to the visible light region. This wide absorption extends the photoelectrocatalytic activity of RuO2/TiO2 heterostructures. To obtain a deeper understanding of the increase of the photoelectrocatalytic activity of RuO2/TiO2 heterostructures compared to pure TiO2, theoretical calculations at the density functional theory (DFT) level were performed on some model clusters of pure TiO2 and the RuO2/TiO2 heterostructure. The theoretical results elucidated that the recombination ratio of electron-hole pairs decreases effectively for RuO2/TiO2 compared to pure TiO2.

3.
Chemosphere ; 310: 136625, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36181853

ABSTRACT

Co3O4 NPs in N-doped porous carbon (Co3O4 NPs@N-PC) materials were prepared by one-pot pyrolysis of a ZIF-67 powder under N2 atmosphere and followed by oxidation under air atmosphere (200 °C) toward promotion catalytic activity and activation of peroxymonosulfate (PMS) to degradation sulfamethoxazole (SMZ). 2-methylimidazole was used as a nitrogen source and a competitive ligand for the synthesis of Co3O4 NPs@N-PC, which in addition to affecting nucleation and growth of the crystal, promotes the production of active Co-N sites. Co3O4 NPs@N-PC nano-architecture has high specific surface areas (250 m2 g-1) and is a non-toxic, effective and stable PMS activator. The effect of operating parameters including SMZ concentration, catalyst dosage, temperature and pH in the presence of Co3O4 NPs@N-PC was investigated. The Co3O4 NPs@N-PC composite showed superior performance in activating PMS over a wide range of pH (2-10) and different temperatures so that complete degradation of SMZ (50 µM, 100 mL) was achieved within 15 min. The role of Co2+/Co3+ redox system in the mechanism before and after PMS activation was determined using XPS analysis. Surface-generated radicals led to the degradation of SMZ, in which the SMZ degradation rate attained 0.21 min-1 with the mineralization of 36.8%. The feasible degradation mechanism of SMZ was studied in the presence of different scavengers and it was revealed that the degradation reaction proceeds from the radical/non-radical pathway and in this process most of the SO4- and OH radicals are dominant. The recoverability and reuse of Co3O4 NPs@N-PC were evaluated to confirm its stability and potential for SMZ degradation and it was observed that the catalyst maintains its catalytic power for at least 5 cycles.


Subject(s)
Carbon , Nanocomposites , Carbon/chemistry , Sulfamethoxazole , Wastewater , Porosity , Anti-Bacterial Agents , Peroxides/chemistry , Nanocomposites/chemistry , Oxidation-Reduction , Oxidative Stress
4.
Ultrason Sonochem ; 58: 104653, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31450335

ABSTRACT

Herein, the efficient role of ultrasonic irradiation both in synthesis of Zr based porous coordination polymer (Zr-PCP) nanoparticles and boosting its catalytic activity, towards the benzimidazoles synthesis is represented. We use an amine based ligand (amino-terephthalate) for PCP and we exhibit that it can have a synergistic catalytic activity. In this work, a unique nano-engineering of cooperative and synergistic catalytic activity of zirconium, as a Lewis acid, and aminophenylene, as an organocatalyst, in the synthesis of heterocycles is presented for the synthesis of benzimidazole from cascade reaction of phenylene diamine with aldehyde at ambient temperature. Zr and amine groups of the Zr-PCP are active catalytic sites which in combination with the ultrasonic irradiation leads to a high selectivity and rapid catalytic production of benzylimidazoles. N2 adsorption-desorption along with BJH analyses confirm the microporosity of the catalyst and recyclability shows that the catalyst is green and sustainable heterogeneous microporous catalyst.

5.
J Mater Chem B ; 7(45): 7228-7234, 2019 12 07.
Article in English | MEDLINE | ID: mdl-31664287

ABSTRACT

The design of hydroxyapatite (HA) nanoarchitecture is critical for fabricating artificial bone tissues as it dictates the biochemical and the mechanical properties of the final product. Herein, we incorporated a simple hard-template approach to synthesise single crystal nanoplates of HA. We used the 2D graphitic nitride (g-C3N4) material to prepare an HA sol-gel under hydrothermal conditions. A new HA nanostructure was then formed during the calcination and removal of g-C3N4 at a higher temperature, which finally led to the production of nanoplates (thickness of ∼100 nm) while in lateral dimension the average size was in the micrometre scale. We characterised the synthesised HA nanoplates with XRD, TEM, and HRTEM. The theoretically predicted nanostructure construction based on Wulff's method is in full agreement with the experimental observations. We then prepared different weight ratios of HA and polylactic acid (PLA) composites for artificial 3D bone fabrication. The strong interaction between PLA and HA's (110) facet, which was the second most prevalent, resulted in the composite's mechanical robustness. After mechanical testing, an optimum ratio was selected for biological studies and 3D printing. Biological experiments demonstrated that the synthesised composite had excellent viability in vitro.


Subject(s)
Hydroxyapatites/chemical synthesis , Nanostructures/chemistry , Printing, Three-Dimensional , Hydroxyapatites/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL