Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Nature ; 592(7852): 70-75, 2021 04.
Article in English | MEDLINE | ID: mdl-33790444

ABSTRACT

Much of the current volume of Earth's continental crust had formed by the end of the Archaean eon1 (2.5 billion years ago), through melting of hydrated basaltic rocks at depths of approximately 25-50 kilometres, forming sodic granites of the tonalite-trondhjemite-granodiorite (TTG) suite2-6. However, the geodynamic setting and processes involved are debated, with fundamental questions arising, such as how and from where the required water was added to deep-crustal TTG source regions7,8. In addition, there have been no reports of voluminous, homogeneous, basaltic sequences in preserved Archaean crust that are enriched enough in incompatible trace elements to be viable TTG sources5,9. Here we use variations in the oxygen isotope composition of zircon, coupled with whole-rock geochemistry, to identify two distinct groups of TTG. Strongly sodic TTGs represent the most-primitive magmas and contain zircon with oxygen isotope compositions that reflect source rocks that had been hydrated by primordial mantle-derived water. These primitive TTGs do not require a source highly enriched in incompatible trace elements, as 'average' TTG does. By contrast, less sodic 'evolved' TTGs require a source that is enriched in both water derived from the hydrosphere and also incompatible trace elements, which are linked to the introduction of hydrated magmas (sanukitoids) formed by melting of metasomatized mantle lithosphere. By concentrating on data from the Palaeoarchaean crust of the Pilbara Craton, we can discount a subduction setting6,10-13, and instead propose that hydrated and enriched near-surface basaltic rocks were introduced into the mantle through density-driven convective overturn of the crust. These results remove many of the paradoxical impediments to understanding early continental crust formation. Our work suggests that sufficient primordial water was already present in Earth's early mafic crust to produce the primitive nuclei of the continents, with additional hydrated sources created through dynamic processes that are unique to the early Earth.

2.
Am J Hum Genet ; 108(9): 1590-1610, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34390653

ABSTRACT

Our study investigated the underlying mechanism for the 14q24 renal cell carcinoma (RCC) susceptibility risk locus identified by a genome-wide association study (GWAS). The sentinel single-nucleotide polymorphism (SNP), rs4903064, at 14q24 confers an allele-specific effect on expression of the double PHD fingers 3 (DPF3) of the BAF SWI/SNF complex as assessed by massively parallel reporter assay, confirmatory luciferase assays, and eQTL analyses. Overexpression of DPF3 in renal cell lines increases growth rates and alters chromatin accessibility and gene expression, leading to inhibition of apoptosis and activation of oncogenic pathways. siRNA interference of multiple DPF3-deregulated genes reduces growth. Our results indicate that germline variation in DPF3, a component of the BAF complex, part of the SWI/SNF complexes, can lead to reduced apoptosis and activation of the STAT3 pathway, both critical in RCC carcinogenesis. In addition, we show that altered DPF3 expression in the 14q24 RCC locus could influence the effectiveness of immunotherapy treatment for RCC by regulating tumor cytokine secretion and immune cell activation.


Subject(s)
Carcinoma, Renal Cell/genetics , Chromosomes, Human, Pair 14 , DNA-Binding Proteins/genetics , Genetic Loci , Kidney Neoplasms/genetics , STAT3 Transcription Factor/genetics , Transcription Factors/genetics , Carcinogenesis/genetics , Carcinogenesis/immunology , Carcinogenesis/pathology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , Cell Line, Tumor , Chromatin/chemistry , Chromatin/immunology , Chromatin Assembly and Disassembly/immunology , Cytokines/genetics , Cytokines/immunology , DNA-Binding Proteins/immunology , Gene Expression Regulation , Genetic Predisposition to Disease , Genome, Human , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Immunotherapy/methods , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Polymorphism, Single Nucleotide , STAT3 Transcription Factor/immunology , T-Lymphocytes, Cytotoxic , Transcription Factors/immunology
3.
J Biol Chem ; 295(13): 4065-4078, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31690629

ABSTRACT

Hypoxia-inducible transcription factors (HIFs) directly dictate the expression of multiple RNA species including novel and as yet uncharacterized long noncoding transcripts with unknown function. We used pan-genomic HIF-binding and transcriptomic data to identify a novel long noncoding RNA Noncoding Intergenic Co-Induced transcript (NICI) on chromosome 12p13.31 which is regulated by hypoxia via HIF-1 promoter-binding in multiple cell types. CRISPR/Cas9-mediated deletion of the hypoxia-response element revealed co-regulation of NICI and the neighboring protein-coding gene, solute carrier family 2 member 3 (SLC2A3) which encodes the high-affinity glucose transporter 3 (GLUT3). Knockdown or knockout of NICI attenuated hypoxic induction of SLC2A3, indicating a direct regulatory role of NICI in SLC2A3 expression, which was further evidenced by CRISPR/Cas9-VPR-mediated activation of NICI expression. We also demonstrate that regulation of SLC2A3 is mediated through transcriptional activation rather than posttranscriptional mechanisms because knockout of NICI leads to reduced recruitment of RNA polymerase 2 to the SLC2A3 promoter. Consistent with this we observe NICI-dependent regulation of glucose consumption and cell proliferation. Furthermore, NICI expression is regulated by the von Hippel-Lindau (VHL) tumor suppressor and is highly expressed in clear cell renal cell carcinoma (ccRCC), where SLC2A3 expression is associated with patient prognosis, implying an important role for the HIF/NICI/SLC2A3 axis in this malignancy.


Subject(s)
Carcinoma, Renal Cell/genetics , Glucose Transporter Type 3/genetics , RNA, Long Noncoding/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , CRISPR-Cas Systems/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Knockout Techniques , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Promoter Regions, Genetic/genetics , RNA Polymerase II/genetics , Transcriptional Activation/genetics , Tumor Hypoxia/genetics
4.
J Hepatol ; 75(1): 64-73, 2021 07.
Article in English | MEDLINE | ID: mdl-33516779

ABSTRACT

BACKGROUND & AIMS: Hypoxia inducible factors (HIFs) are a hallmark of inflammation and are key regulators of hepatic immunity and metabolism, yet their role in HBV replication is poorly defined. HBV replicates in hepatocytes within the liver, a naturally hypoxic organ, however most studies of viral replication are performed under conditions of atmospheric oxygen, where HIFs are inactive. We therefore investigated the role of HIFs in regulating HBV replication. METHODS: Using cell culture, animal models, human tissue and pharmacological agents inhibiting the HIF-prolyl hydroxylases, we investigated the impact of hypoxia on the HBV life cycle. RESULTS: Culturing liver cell-based model systems under low oxygen uncovered a new role for HIFs in binding HBV DNA and activating the basal core promoter, leading to increased pre-genomic RNA and de novo HBV particle secretion. The presence of hypoxia responsive elements among all primate members of the hepadnaviridae highlights an evolutionary conserved role for HIFs in regulating this virus family. CONCLUSIONS: Identifying a role for this conserved oxygen sensor in regulating HBV transcription suggests that this virus has evolved to exploit the HIF signaling pathway to persist in the low oxygen environment of the liver. Our studies show the importance of considering oxygen availability when studying HBV-host interactions and provide innovative routes to better understand and target chronic HBV infection. LAY SUMMARY: Viral replication in host cells is defined by the cellular microenvironment and one key factor is local oxygen tension. Hepatitis B virus (HBV) replicates in the liver, a naturally hypoxic organ. Hypoxia inducible factors (HIFs) are the major sensors of low oxygen; herein, we identify a new role for these factors in regulating HBV replication, revealing new therapeutic targets.


Subject(s)
Hepatitis B virus , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases , Kruppel-Like Factor 6/metabolism , Oxygen/metabolism , Virus Replication/physiology , Animals , Cellular Microenvironment , Hepadnaviridae/physiology , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology , Host Microbial Interactions , Humans , Hypoxia/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Liver/metabolism , Signal Transduction , Transcriptional Activation
5.
EMBO Rep ; 20(1)2019 01.
Article in English | MEDLINE | ID: mdl-30429208

ABSTRACT

Hypoxia-inducible factor (HIF) is the major transcriptional regulator of cellular responses to hypoxia. The two principal HIF-α isoforms, HIF-1α and HIF-2α, are progressively stabilized in response to hypoxia and form heterodimers with HIF-1ß to activate a broad range of transcriptional responses. Here, we report on the pan-genomic distribution of isoform-specific HIF binding in response to hypoxia of varying severity and duration, and in response to genetic ablation of each HIF-α isoform. Our findings reveal that, despite an identical consensus recognition sequence in DNA, each HIF heterodimer loads progressively at a distinct repertoire of cell-type-specific sites across the genome, with little evidence of redistribution under any of the conditions examined. Marked biases towards promoter-proximal binding of HIF-1 and promoter-distant binding of HIF-2 were observed under all conditions and were consistent in multiple cell type. The findings imply that each HIF isoform has an inherent property that determines its binding distribution across the genome, which might be exploited to therapeutically target the specific transcriptional output of each isoform independently.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Transcription, Genetic , Cell Line , Chromatin/genetics , DNA/genetics , DNA-Binding Proteins/genetics , Epigenomics , Gene Expression Regulation/genetics , Humans , Promoter Regions, Genetic , Protein Isoforms/genetics
6.
Haematologica ; 105(12): 2774-2784, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33256376

ABSTRACT

While it is well-established that distal hypoxia response elements (HREs) regulate hypoxia-inducible factor (HIF) target genes such as erythropoietin (Epo), an interplay between multiple distal and proximal (promoter) HREs has not been described so far. Hepatic Epo expression is regulated by a HRE located downstream of the EPO gene, but this 3' HRE is dispensable for renal EPO gene expression. We previously identified a 5' HRE and could show that both HREs direct exogenous reporter gene expression. Here, we show that whereas in hepatic cells the 3' but not the 5' HRE is required, in neuronal cells both the 5' and 3' HREs contribute to endogenous Epo induction. Moreover, two novel putative HREs were identified in the EPO promoter. In hepatoma cells HIF interacted mainly with the distal 3' HRE, but in neuronal cells HIF most strongly bound the promoter, to a lesser extent the 3' HRE, and not at all the 5' HRE. Interestingly, mutation of either of the two distal HREs abrogated HIF binding to the 3' and promoter HREs. These results suggest that a canonical functional HRE can recruit multiple, not necessarily HIF, transcription factors to mediate HIF binding to different distant HREs in an organ-specific manner.


Subject(s)
Erythropoietin , Response Elements , Cell Hypoxia , Erythropoietin/genetics , Gene Expression , Humans , Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit
7.
PLoS Genet ; 13(7): e1006872, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28715484

ABSTRACT

Un-physiological activation of hypoxia inducible factor (HIF) is an early event in most renal cell cancers (RCC) following inactivation of the von Hippel-Lindau tumor suppressor. Despite intense study, how this impinges on cancer development is incompletely understood. To test for the impact of genetic signals on this pathway, we aligned human RCC-susceptibility polymorphisms with genome-wide assays of HIF-binding and observed highly significant overlap. Allele-specific assays of HIF binding, chromatin conformation and gene expression together with eQTL analyses in human tumors were applied to mechanistic analysis of one such overlapping site at chromosome 12p12.1. This defined a novel stage-specific mechanism in which the risk polymorphism, rs12814794, directly creates a new HIF-binding site that mediates HIF-1α isoform specific upregulation of its target BHLHE41. The alignment of multiple sites in the HIF cis-acting apparatus with RCC-susceptibility polymorphisms strongly supports a causal model in which minor variation in this pathway exerts significant effects on RCC development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/genetics , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Polymorphism, Single Nucleotide , Alleles , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Renal Cell/diagnosis , Cell Line, Tumor , Chromatin Immunoprecipitation , Chromosomes, Human, Pair 12/genetics , Cyclin D1 , Genome-Wide Association Study , HeLa Cells , Hep G2 Cells , High-Throughput Nucleotide Sequencing , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MCF-7 Cells , Quantitative Trait Loci , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Up-Regulation
8.
Int J Mol Sci ; 21(21)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33171917

ABSTRACT

Cellular responses to low oxygen (hypoxia) are fundamental to normal physiology and to the pathology of many common diseases. Hypoxia-inducible factor (HIF) is central to this by enhancing the transcriptional activity of many hundreds of genes. The cellular response to HIF is cell-type-specific and is largely governed by the pre-existing epigenetic landscape. Prior to activation, HIF-binding sites and the promoters of HIF-target genes are already accessible, in contact with each other through chromatin looping and display markers of activity. However, hypoxia also modulates the epigenetic environment, both in parallel to and as a consequence of HIF activation. This occurs through a combination of oxygen-sensitive changes in enzyme activity, transcriptional activation of epigenetic modifiers, and localized recruitment to chromatin by HIF and activated RNApol2. These hypoxic changes in the chromatin environment may both contribute to and occur as a consequence of transcriptional regulation. Nevertheless, they have the capacity to both modulate and extend the transcriptional response to hypoxia.


Subject(s)
Cell Hypoxia/physiology , Chromatin/genetics , Hypoxia-Inducible Factor 1/metabolism , Animals , Binding Sites , Chromatin/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Expression , Humans , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ketoglutaric Acids/metabolism , Oxygen/metabolism , Promoter Regions, Genetic , Protein Binding , Transcription, Genetic
9.
BMC Cancer ; 19(1): 967, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31623580

ABSTRACT

BACKGROUND: Patients with metastatic renal carcinoma frequently have pre-existing renal impairment and not infrequently develop worsening renal function as a complication of their treatment. The presence of pancreatic metastases in patients with metastatic renal carcinoma, often confers a more favourable prognosis and as a consequence this patient group may be exposed to such treatments for more prolonged periods of time. However, the development of renal failure may also be a consequence of the cancer itself rather than its treatment. CASE PRESENTATION: We present an 84-year-old patient receiving the tyrosine kinase inhibitor (TKI) pazopanib for metastatic renal carcinoma who developed oxalate nephropathy as a consequence of pancreatic exocrine insufficiency resulting from pancreatic metastases. CONCLUSIONS: This case demonstrates the importance of investigating unexpected toxicities and highlights the potential consequences of pancreatic insufficiency and its sequelae in patients with pancreatic metastases.


Subject(s)
Carcinoma, Renal Cell/complications , Carcinoma, Renal Cell/pathology , Exocrine Pancreatic Insufficiency/complications , Kidney Failure, Chronic/etiology , Kidney Neoplasms/complications , Kidney Neoplasms/pathology , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/secondary , Acetates/therapeutic use , Aged, 80 and over , Calcium Compounds/therapeutic use , Carcinoma, Renal Cell/drug therapy , Gastrointestinal Agents/therapeutic use , Humans , Indazoles , Kidney Failure, Chronic/therapy , Kidney Neoplasms/drug therapy , Male , Oxalates/urine , Pancreatic Neoplasms/drug therapy , Pancrelipase/therapeutic use , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/adverse effects , Pyrimidines/therapeutic use , Renal Dialysis , Sulfonamides/adverse effects , Sulfonamides/therapeutic use , Treatment Outcome
11.
EMBO Rep ; 17(10): 1410-1421, 2016 10.
Article in English | MEDLINE | ID: mdl-27506891

ABSTRACT

Hypoxia-inducible factor (HIF) directs an extensive transcriptional cascade that transduces numerous adaptive responses to hypoxia. Pan-genomic analyses, using chromatin immunoprecipitation and transcript profiling, have revealed large numbers of HIF-binding sites that are generally associated with hypoxia-inducible transcripts, even over long chromosomal distances. However, these studies do not define the specific targets of HIF-binding sites and do not reveal how induction of HIF affects chromatin conformation over distantly connected functional elements. To address these questions, we deployed a recently developed chromosome conformation assay that enables simultaneous high-resolution analyses from multiple viewpoints. These assays defined specific long-range interactions between intergenic HIF-binding regions and one or more promoters of hypoxia-inducible genes, revealing the existence of multiple enhancer-promoter, promoter-enhancer, and enhancer-enhancer interactions. However, neither short-term activation of HIF by hypoxia, nor long-term stabilization of HIF in von Hippel-Lindau (VHL)-defective cells greatly alters these interactions, indicating that at least under these conditions, HIF can operate on preexisting patterns of chromatin-chromatin interactions that define potential transcriptional targets and permit rapid gene activation by hypoxic stress.


Subject(s)
Binding Sites , Chromatin/genetics , Chromatin/metabolism , Computational Biology/methods , Hypoxia-Inducible Factor 1/metabolism , Promoter Regions, Genetic , Algorithms , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Cluster Analysis , Enhancer Elements, Genetic , Gene Expression Regulation , Glycolysis , High-Throughput Nucleotide Sequencing , Humans , Organ Specificity/genetics , Protein Binding , Transcriptional Activation
12.
J Biol Chem ; 291(39): 20661-73, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27502280

ABSTRACT

The hypoxia-inducible factor (HIF) system orchestrates cellular responses to hypoxia in animals. HIF is an α/ß-heterodimeric transcription factor that regulates the expression of hundreds of genes in a tissue context-dependent manner. The major hypoxia-sensing component of the HIF system involves oxygen-dependent catalysis by the HIF hydroxylases; in humans there are three HIF prolyl hydroxylases (PHD1-3) and an asparaginyl hydroxylase (factor-inhibiting HIF (FIH)). PHD catalysis regulates HIFα levels, and FIH catalysis regulates HIF activity. How differences in HIFα hydroxylation status relate to variations in the induction of specific HIF target gene transcription is unknown. We report studies using small molecule HIF hydroxylase inhibitors that investigate the extent to which HIF target gene expression is induced by PHD or FIH inhibition. The results reveal substantial differences in the role of prolyl and asparaginyl hydroxylation in regulating hypoxia-responsive genes in cells. PHD inhibitors with different structural scaffolds behave similarly. Under the tested conditions, a broad-spectrum 2-oxoglutarate dioxygenase inhibitor is a better mimic of the overall transcriptional response to hypoxia than the selective PHD inhibitors, consistent with an important role for FIH in the hypoxic transcriptional response. Indeed, combined application of selective PHD and FIH inhibitors resulted in the transcriptional induction of a subset of genes not fully responsive to PHD inhibition alone. Thus, for the therapeutic regulation of HIF target genes, it is important to consider both PHD and FIH activity, and in the case of some sets of target genes, simultaneous inhibition of the PHDs and FIH catalysis may be preferable.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Hypoxia-Inducible Factor-Proline Dioxygenases/biosynthesis , Transcription, Genetic/physiology , Cell Hypoxia/physiology , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , MCF-7 Cells
13.
Nucleic Acids Res ; 43(12): 5810-23, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26007655

ABSTRACT

A crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/ß DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1. PAG1, a transmembrane adaptor protein involved in Src signalling, was hypoxically induced in various cell lines and mouse tissues. ChIP and reporter gene assays demonstrated that the -82 kb HRE regulates PAG1, but not an equally distant gene further upstream, by direct interaction with HIF. Ablation of the consensus HRE motif abolished the hypoxic induction of PAG1 but not general oxygen signalling. 3C assays revealed that the -82 kb HRE physically associates with the PAG1 promoter region, independent of HIF-DNA interaction. These results demonstrate a constitutive interaction between the -82 kb HRE and the PAG1 promoter, suggesting a physiologically important rapid response to hypoxia.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromatin/metabolism , Hypoxia-Inducible Factor 1/metabolism , Membrane Proteins/genetics , Response Elements , Transcriptional Activation , Adaptor Proteins, Signal Transducing/biosynthesis , Animals , Cell Hypoxia , Cell Line , Chromatin/chemistry , HeLa Cells , Humans , Membrane Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Promoter Regions, Genetic , Signal Transduction , src-Family Kinases/metabolism
14.
Proc Natl Acad Sci U S A ; 111(28): 10083-8, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24958873

ABSTRACT

The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.


Subject(s)
Archaea/physiology , Biological Evolution , Fossils , Volcanic Eruptions
15.
EMBO Rep ; 15(1): 70-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24363272

ABSTRACT

Hypoxia is central to both ischaemic and neoplastic diseases. However, the non-coding transcriptional response to hypoxia is largely uncharacterized. We undertook integrated genomic analyses of both non-coding and coding transcripts using massively parallel sequencing and interfaced this data with pan-genomic analyses of hypoxia-inducible factor (HIF) and RNApol2 binding in hypoxic cells. These analyses revealed that all classes of RNA are profoundly regulated by hypoxia and implicated HIF as a major direct regulator of both the non-coding and coding transcriptome, acting predominantly through release of pre-bound promoter-paused RNApol2. These findings indicate that the transcriptional response to hypoxia is substantially more extensive than previously considered.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , RNA Polymerase II/metabolism , Transcriptome , Cell Hypoxia , Humans , MCF-7 Cells , Promoter Regions, Genetic , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcription, Genetic
16.
Mol Cancer ; 13: 28, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24517586

ABSTRACT

BACKGROUND: In mammalians, HIF is a master regulator of hypoxia gene expression through direct binding to DNA, while its role in microRNA expression regulation, critical in the hypoxia response, is not elucidated genome wide. Our aim is to investigate in depth the regulation of microRNA expression by hypoxia in the breast cancer cell line MCF-7, establish the relationship between microRNA expression and HIF binding sites, pri-miRNA transcription and microRNA processing gene expression. METHODS: MCF-7 cells were incubated at 1% Oxygen for 16, 32 and 48 h. SiRNA against HIF-1α and HIF-2α were performed as previously published. MicroRNA and mRNA expression were assessed using microRNA microarrays, small RNA sequencing, gene expression microarrays and Real time PCR. The Kraken pipeline was applied for microRNA-seq analysis along with Bioconductor packages. Microarray data was analysed using Limma (Bioconductor), ChIP-seq data were analysed using Gene Set Enrichment Analysis and multiple testing correction applied in all analyses. RESULTS: Hypoxia time course microRNA sequencing data analysis identified 41 microRNAs significantly up- and 28 down-regulated, including hsa-miR-4521, hsa-miR-145-3p and hsa-miR-222-5p reported in conjunction with hypoxia for the first time. Integration of HIF-1α and HIF-2α ChIP-seq data with expression data showed overall association between binding sites and microRNA up-regulation, with hsa-miR-210-3p and microRNAs of miR-27a/23a/24-2 and miR-30b/30d clusters as predominant examples. Moreover the expression of hsa-miR-27a-3p and hsa-miR-24-3p was found positively associated to a hypoxia gene signature in breast cancer. Gene expression analysis showed no full coordination between pri-miRNA and microRNA expression, pointing towards additional levels of regulation. Several transcripts involved in microRNA processing were found regulated by hypoxia, of which DICER (down-regulated) and AGO4 (up-regulated) were HIF dependent. DICER expression was found inversely correlated to hypoxia in breast cancer. CONCLUSIONS: Integrated analysis of microRNA, mRNA and ChIP-seq data in a model cell line supports the hypothesis that microRNA expression under hypoxia is regulated at transcriptional and post-transcriptional level, with the presence of HIF binding sites at microRNA genomic loci associated with up-regulation. The identification of hypoxia and HIF regulated microRNAs relevant for breast cancer is important for our understanding of disease development and design of therapeutic interventions.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Hypoxia-Inducible Factor 1/genetics , MicroRNAs/analysis , RNA, Messenger/analysis , Breast Neoplasms/metabolism , Cell Hypoxia/genetics , Humans , Hypoxia-Inducible Factor 1/metabolism , MCF-7 Cells , Oligonucleotide Array Sequence Analysis , Protein Binding , Real-Time Polymerase Chain Reaction , Transcriptome
17.
Blood ; 119(3): 857-60, 2012 Jan 19.
Article in English | MEDLINE | ID: mdl-22130801

ABSTRACT

Enhanced erythropoietic drive and iron deficiency both influence iron homeostasis through the suppression of the iron regulatory hormone hepcidin. Hypoxia also suppresses hepcidin through a mechanism that is unknown. We measured iron indices and plasma hepcidin levels in healthy volunteers during a 7-day sojourn to high altitude (4340 m above sea level), with and without prior intravenous iron loading. Without prior iron loading, a rapid reduction in plasma hepcidin was observed that was almost complete by the second day at altitude. This occurred before any index of iron availability had changed. Prior iron loading delayed the decrease in hepcidin until after the transferrin saturation, but not the ferritin concentration, had normalized. We conclude that hepcidin suppression by the hypoxia of high altitude is not driven by a reduction in iron stores.


Subject(s)
Altitude , Antimicrobial Cationic Peptides/metabolism , Gene Expression Regulation , Hypoxia/metabolism , Iron Metabolism Disorders/metabolism , Iron/metabolism , Adult , Case-Control Studies , Erythropoiesis/genetics , Erythropoiesis/physiology , Erythropoietin/metabolism , Ferritins/metabolism , Growth Differentiation Factor 15/metabolism , Hepcidins , Homeostasis , Humans , Hypoxia/complications , Iron Metabolism Disorders/etiology , Iron, Dietary/metabolism , Transferrin/genetics , Transferrin/metabolism , beta-Thalassemia/metabolism
18.
Cancer Res ; 84(11): 1799-1816, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38502859

ABSTRACT

Defining the initial events in oncogenesis and the cellular responses they entrain, even in advance of morphologic abnormality, is a fundamental challenge in understanding cancer initiation. As a paradigm to address this, we longitudinally studied the changes induced by loss of the tumor suppressor gene von Hippel Lindau (VHL), which ultimately drives clear cell renal cell carcinoma. Vhl inactivation was directly coupled to expression of a tdTomato reporter within a single allele, allowing accurate visualization of affected cells in their native context and retrieval from the kidney for single-cell RNA sequencing. This strategy uncovered cell type-specific responses to Vhl inactivation, defined a proximal tubular cell class with oncogenic potential, and revealed longer term adaptive changes in the renal epithelium and the interstitium. Oncogenic cell tagging also revealed markedly heterogeneous cellular effects including time-limited proliferation and elimination of specific cell types. Overall, this study reports an experimental strategy for understanding oncogenic processes in which cells bearing genetic alterations can be generated in their native context, marked, and analyzed over time. The observed effects of loss of Vhl in kidney cells provide insights into VHL tumor suppressor action and development of renal cell carcinoma. SIGNIFICANCE: Single-cell analysis of heterogeneous and dynamic responses to Vhl inactivation in the kidney suggests that early events shape the cell type specificity of oncogenesis, providing a focus for mechanistic understanding and therapeutic targeting.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Single-Cell Analysis , Von Hippel-Lindau Tumor Suppressor Protein , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Single-Cell Analysis/methods , Animals , Mice , Transcriptome , Humans , Kidney/pathology , Kidney/metabolism , Carcinogenesis/genetics , Cell Proliferation/genetics
19.
Blood ; 117(23): e207-17, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-21447827

ABSTRACT

Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromosome Mapping , Epigenesis, Genetic/physiology , Genome, Human/physiology , Genome-Wide Association Study , Response Elements/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation/methods , Female , Humans , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL