Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Anim Ecol ; 93(4): 447-459, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348546

ABSTRACT

Predation risk is a function of spatiotemporal overlap between predator and prey, as well as behavioural responses during encounters. Dynamic factors (e.g. group size, prey availability and animal movement or state) affect risk, but rarely are integrated in risk assessments. Our work targets a system where predation risk is fundamentally linked to temporal patterns in prey abundance and behaviour. For neonatal ungulate prey, risk is defined within a short temporal window during which the pulse in parturition, increasing movement capacity with age and antipredation tactics have the potential to mediate risk. In our coyote-mule deer (Canis latrans-Odocoileus hemionus) system, leveraging GPS data collected from both predator and prey, we tested expectations of shared enemy and reproductive risk hypotheses. We asked two questions regarding risk: (A) How does primary and alternative prey habitat, predator and prey activity, and reproductive tactics (e.g. birth synchrony and maternal defence) influence the vulnerability of a neonate encountering a predator? (B) How do the same factors affect behaviour by predators relative to the time before and after an encounter? Despite increased selection for mule deer and intensified search behaviour by coyotes during the peak in mule deer parturition, mule deer were afforded protection from predation via predator swamping, experiencing reduced per-capita encounter risk when most neonates were born. Mule deer occupying rabbit habitat (Sylvilagus spp.; coyote's primary prey) experienced the greatest risk of encounter but the availability of rabbit habitat did not affect predator behaviour during encounters. Encounter risk increased in areas with greater availability of mule deer habitat: coyotes shifted their behaviour relative to deer habitat, and the pulse in mule deer parturition and movement of neonatal deer during encounters elicited increased speed and tortuosity by coyotes. In addition to the spatial distribution of prey, temporal patterns in prey availability and animal behavioural state were fundamental in defining risk. Our work reveals the nuanced consequences of pulsed availability on predation risk for alternative prey, whereby responses by predators to sudden resource availability, the lasting effects of diversionary prey and inherent antipredation tactics ultimately dictate risk.


Subject(s)
Coyotes , Deer , Animals , Rabbits , Deer/physiology , Coyotes/physiology , Ecosystem , Predatory Behavior/physiology , Equidae
2.
J Anim Ecol ; 92(3): 619-634, 2023 03.
Article in English | MEDLINE | ID: mdl-36527180

ABSTRACT

Climate warming creates energetic challenges for endothermic species by increasing metabolic and hydric costs of thermoregulation. Although endotherms can invoke an array of behavioural and physiological strategies for maintaining homeostasis, the relative effectiveness of those strategies in a climate that is becoming both warmer and drier is not well understood. In accordance with the heat dissipation limit theory which suggests that allocation of energy to growth and reproduction by endotherms is constrained by the ability to dissipate heat, we expected that patterns of habitat use by large, heat-sensitive mammals across multiple scales are critical for behavioural thermoregulation during periods of potential heat stress and that they must invest a large portion of time to maintain heat balance. To test our predictions, we evaluated mechanisms underpinning the effectiveness of bed sites for ameliorating daytime heat loads and potential heat stress across the landscape while accounting for other factors known to affect behaviour. We integrated detailed data on microclimate and animal attributes of moose Alces alces, into a biophysical model to quantify costs of thermoregulation at fine and coarse spatial scales. During summer, moose spent an average of 67.8% of daylight hours bedded, and selected bed sites and home ranges that reduced risk of experiencing heat stress. For most of the day, shade could effectively mitigate the risk of experiencing heat stress up to 10°C, but at warmer temperatures (up to 20°C) wet soil was necessary to maintain homeostasis via conductive heat loss. Consistent selection across spatial scales for locations that reduced heat load underscores the importance of the thermal environment as a driver of behaviour in this heat-sensitive mammal. Moose in North America have long been characterized as riparian-obligate species because of their dependence on woody plant species for food. Nevertheless, the importance of dissipating endogenous heat loads conductively through wet soil suggests riparian habitats also are critical thermal refuges for moose. Such refuges may be especially important in the face of a warming climate in which both high environmental temperatures and drier conditions will likely exacerbate limits to heat dissipation, especially for large, heat-sensitive animals.


Subject(s)
Deer , Ecosystem , Animals , Seasons , Temperature , Deer/physiology , Soil , Climate Change
3.
Ecol Appl ; 32(7): e2648, 2022 10.
Article in English | MEDLINE | ID: mdl-35535971

ABSTRACT

Understanding factors that influence animal behavior is central to ecology. Basic principles of animal ecology imply that individuals should seek to maximize survival and reproduction, which means carefully weighing risk against reward. Decisions become increasingly complex and constrained, however, when risk is spatiotemporally variable. We advance a growing body of work in predator-prey behavior by evaluating novel questions where a prey species is confronted with multiple predators and a potential competitor. We tested how fine-scale behavior of female mule deer (Odocoileus hemionus) during the reproductive season shifted depending upon spatial and temporal variation in risk from predators and a potential competitor. We expected female deer to avoid areas of high risk when movement activity of predators and a competitor were high. We used GPS data collected from 76 adult female mule deer, 35 adult female elk, 33 adult coyotes, and six adult mountain lions. Counter to our expectations, female deer exhibited selection for multiple risk factors, however, selection for risk was dampened by the exposure to risk within home ranges of female deer, producing a functional response in habitat selection. Furthermore, temporal variation in movement activity of predators and elk across the diel cycle did not result in a shift in movement activity by female deer. Instead, the average level of risk within their home range was the predominant factor modulating the response to risk by female deer. Our results counter prevailing hypotheses of how large herbivores navigate risky landscapes and emphasize the importance of accounting for the local environment when identifying effects of risk on animal behavior. Moreover, our findings highlight additional behavioral mechanisms used by large herbivores to mitigate multiple sources of predation and potential competitive interactions.


Subject(s)
Coyotes , Deer , Animals , Deer/physiology , Ecosystem , Equidae , Female , Herbivory , Predatory Behavior
4.
Ecol Appl ; 31(4): e02299, 2021 06.
Article in English | MEDLINE | ID: mdl-33428817

ABSTRACT

For ungulates and other long-lived species, life-history theory predicts that nutritional reserves are allocated to reproduction in a state-dependent manner because survival is highly conserved. Further, as per capita food abundance and nutritional reserves decline (i.e., density dependence intensifies), reproduction and recruitment become increasingly sensitive to weather. Thus, the degree to which weather influences vital rates should be associated with proximity to nutritional carrying capacity-a notion that we refer to as the Nutritional Buffer Hypothesis. We tested the Nutritional Buffer Hypothesis using six moose (Alces alces) populations that varied in calf recruitment (33-69 calves/100 cows). We predicted that populations with high calf recruitment were nutritionally buffered against the effects of unfavorable weather, and thus were below nutritional carrying capacity. We applied a suite of tools to quantify habitat and nutritional condition of each population and found that increased browse condition, forage quality, and body fat were associated with increased pregnancy and calf recruitment, thereby providing multiple lines of evidence that declines in calf recruitment were underpinned by resource limitation. From 2001 to 2015, recruitment was more sensitive to interannual variation in weather (e.g., winter severity, drought) and plant phenology (e.g., duration of spring) for populations with reduced browse condition, forage quality, and body fat, suggesting these populations lacked the nutritional reserves necessary to buffer demographic performance against the effects of unfavorable weather. Further, average within-population calf recruitment was determined by regional climatic variation, suggesting that the pattern of reduced recruitment near the southern range boundary of moose stems from an interaction between climate and resource limitation. When coupled with information on habitat, nutrition, weather, and climate, life-history theory provides a framework to estimate nutritional limitation, proximity to nutritional carrying capacity, and impacts of climate change for ungulates.


Subject(s)
Deer , Animals , Cattle , Ecosystem , Female , Plants , Pregnancy , Seasons , Weather
5.
J Anim Ecol ; 90(4): 955-966, 2021 04.
Article in English | MEDLINE | ID: mdl-33481254

ABSTRACT

While the tendency to return to previously visited locations-termed 'site fidelity'-is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals' recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. We compared inter-year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance-based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren-ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a 'win-stay, lose-switch' strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter-annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species-specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.


Subject(s)
Deer , Reindeer , Africa , Animals , Ecosystem , North America
6.
Glob Chang Biol ; 26(8): 4215-4225, 2020 08.
Article in English | MEDLINE | ID: mdl-32524724

ABSTRACT

To increase resource gain, many herbivores pace their migration with the flush of nutritious plant green-up that progresses across the landscape (termed "green-wave surfing"). Despite concerns about the effects of climate change on migratory species and the critical role of plant phenology in mediating the ability of ungulates to surf, little is known about how drought shapes the green wave and influences the foraging benefits of migration. With a 19 year dataset on drought and plant phenology across 99 unique migratory routes of mule deer (Odocoileus hemionus) in western Wyoming, United States, we show that drought shortened the duration of spring green-up by approximately twofold (2.5 weeks) and resulted in less sequential green-up along migratory routes. We investigated the possibility that some routes were buffered from the effects of drought (i.e., routes that maintained long green-up duration irrespective of drought intensity). We found no evidence of drought-buffered routes. Instead, routes with the longest green-up in non-drought years also were the most affected by drought. Despite phenological changes along the migratory route, mule deer closely followed drought-altered green waves during migration. Migrating deer did not experience a trophic mismatch with the green wave during drought. Instead, the shorter window of green-up caused by drought reduced the opportunity to accumulate forage resources during rapid spring migrations. Our work highlights the synchronization of phenological events as an important mechanism by which climate change can negatively affect migratory species by reducing the temporal availability of key food resources. For migratory herbivores, climate change poses a new and growing threat by altering resource phenology and diminishing the foraging benefit of migration.


Subject(s)
Animal Migration , Deer , Ecosystem , Animals , Droughts , Seasons , Wyoming
7.
Ecol Appl ; 30(6): e02129, 2020 09.
Article in English | MEDLINE | ID: mdl-32223053

ABSTRACT

Wildlife diseases pose a substantial threat to the provisioning of ecosystem services. We use a novel modeling approach to study the potential loss of these services through the imminent introduction of chronic wasting disease (CWD) to elk populations in the Greater Yellowstone Ecosystem (GYE). A specific concern is that concentrating elk at feedgrounds may exacerbate the spread of CWD, whereas eliminating feedgrounds may increase the number of elk on private ranchlands and the transmission of a second disease, brucellosis, from elk to cattle. To evaluate the consequences of management strategies given the threat of two concurrent wildlife diseases, we develop a spatiotemporal bioeconomic model. GPS data from elk and landscape attributes are used to predict migratory behavior and population densities with and without supplementary feeding. We use a 4,800 km2 area around Pinedale, Wyoming containing four existing feedgrounds as a case study. For this area, we simulate welfare estimates under a variety of management strategies. Our results indicate that continuing to feed elk could result in substantial welfare losses for the case-study region. Therefore, to maximize the present value of economic net benefits generated by the local elk population upon CWD's arrival in the region, wildlife managers may wish to consider discontinuing elk feedgrounds while simultaneously developing new methods to mitigate the financial impact to ranchers of possible brucellosis transmission to livestock. More generally, our methods can be used to weigh the costs and benefits of human-wildlife interactions in the presence of multiple disease risks.


Subject(s)
Brucellosis , Deer , Wasting Disease, Chronic , Animals , Brucellosis/epidemiology , Brucellosis/prevention & control , Brucellosis/veterinary , Cattle , Ecosystem , Wasting Disease, Chronic/epidemiology , Wyoming/epidemiology
8.
Ecol Lett ; 22(11): 1797-1805, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31412429

ABSTRACT

From fine-scale foraging to broad-scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long-distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2-28 times more strongly than tracking spring green-up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas.


Subject(s)
Deer , Herbivory , Animal Migration , Animals , Ecosystem , Spatial Memory
9.
Ecol Appl ; 29(7): e01972, 2019 10.
Article in English | MEDLINE | ID: mdl-31301178

ABSTRACT

The availability and quality of forage on the landscape constitute the foodscape within which animals make behavioral decisions to acquire food. Novel changes to the foodscape, such as human disturbance, can alter behavioral decisions that favor avoidance of perceived risk over food acquisition. Although behavioral changes and population declines often coincide with the introduction of human disturbance, the link(s) between behavior and population trajectory are difficult to elucidate. To identify a pathway by which human disturbance may affect ungulate populations, we tested the Behaviorally Mediated Forage-Loss Hypothesis, wherein behavioral avoidance is predicted to reduce use of available forage adjacent to disturbance. We used GPS collar data collected from migratory mule deer (Odocoileus hemionus) to evaluate habitat selection, movement patterns, and time-budgeting behavior in response to varying levels of forage availability and human disturbance in three different populations exposed to a gradient of energy development. Subsequently, we linked animal behavior with measured use of forage relative to human disturbance, forage availability, and quality. Mule deer avoided human disturbance at both home range and winter range scales, but showed negligible differences in vigilance rates at the site level. Use of the primary winter forage, sagebrush (Artemisia tridentata), increased as production of new annual growth increased but use decreased with proximity to disturbance. Consequently, avoidance of human disturbance prompted loss of otherwise available forage, resulting in indirect habitat loss that was 4.6-times greater than direct habitat loss from roads, well pads, and other infrastructure. The multiplicative effects of indirect habitat loss, as mediated by behavior, impaired use of the foodscape by reducing the amount of available forage for mule deer, a consequence of which may be winter ranges that support fewer animals than they did before development.


Subject(s)
Deer , Animals , Ecosystem , Homing Behavior , Humans , Seasons
10.
J Anim Ecol ; 88(3): 450-460, 2019 03.
Article in English | MEDLINE | ID: mdl-30449042

ABSTRACT

The migratory movements of wild animals can promote abundance and support ecosystem functioning. For large herbivores, mounting evidence suggests that migratory behaviour is an individually variable trait, where individuals can easily switch between migrant and resident tactics. The degree of migratory plasticity, including whether and where to migrate, has important implications for the ecology and conservation of large herbivores in a changing world. Mule deer (Odocoileus hemionus) are an iconic species of western North America, but are notably absent from the body of literature that suggests large herbivore migrations are highly plastic. We evaluated plasticity of migration in female mule deer using longitudinal GPS data collected from 312 individuals across nine populations in the western United States, including 882 animal-years (801 migrants and 81 residents). We followed both resident and migratory mule deer through time to determine whether individual animals switched migratory behaviours (i.e., whether to migrate) from migratory to residency or vice versa. Additionally, we examined the fidelity of individuals to their migration routes (i.e., where to migrate) to determine whether they used the same routes year after year. We also evaluated whether age and reproductive status affected propensity to migrate or fidelity to migratory routes. Our results indicate that mule deer, unlike other large herbivores, have little or no plasticity in terms of whether or where they migrate. Resident deer remained residents, and migrant deer remained migrants, regardless of age, reproductive status or number of years monitored. Further, migratory individuals showed strong fidelity (>80%) to their migration routes year after year. Our study clearly shows that migration plasticity is not ubiquitous among large herbivores. Because of their rigid migratory behaviour, mule deer may not adapt to changing environmental conditions as readily as large herbivores with more plastic migratory behaviour (e.g., elk). The fixed migratory behaviours of mule deer make clear that conservation efforts aimed at traditional seasonal ranges and migration routes are warranted for sustaining this iconic species that continues to decline across its range.


Subject(s)
Deer , Herbivory , Animal Migration , Animals , Ecosystem , Female , North America , Seasons
11.
Ecol Appl ; 28(8): 2153-2164, 2018 12.
Article in English | MEDLINE | ID: mdl-30329189

ABSTRACT

Long-distance migration by terrestrial mammals is a phenomenon critical to the persistence of populations, but such migrations are declining globally because of over-harvest, habitat loss, and movement barriers. Increasingly, there is a need to improve existing routes, mitigate route segments affected by anthropogenic disturbance, and in some instances, determine whether alternative routes are available. Using a hypothesis-driven approach, we identified landscape features associated with the primary functional attributes, stopovers and movement corridors, of spring migratory routes for mule deer in two study areas using resource selection functions. Patterns of selection for landscape attributes of movement corridors and stopovers mostly were similar; however, landscape features associated with movement corridors aligned better with areas that facilitated movement, whereas selection of stopovers was consistent with sites offering early access to spring forage. For movement corridors, deer selected for dry sites, low elevation, and low anthropogenic disturbance. For stopovers, deer selected for dry sites, with consistently early green-up across years, south-southwesterly aspects, low elevation, and low anthropogenic disturbance. Stopovers and movement corridors of a migratory route presumably promote different functions, but for a terrestrial migrant, patterns of habitat selection indicate that the same general habitat attributes may facilitate both movement and foraging in spring. Our findings emphasize the roles of topographical wetness, vegetation phenology, and anthropogenic disturbance in shaping use of the landscape during migration for this large herbivore. Avoiding human disturbance and tracking ephemeral forage resources appear to be a consistent pattern during migration, which reinforces the notion that movement during migration has a nutritional underpinning and disturbance potentially alters the net benefits of migration.


Subject(s)
Animal Migration , Deer/physiology , Ecosystem , Herbivory , Animals , Female , Seasons
12.
Ecol Lett ; 20(6): 741-750, 2017 06.
Article in English | MEDLINE | ID: mdl-28444870

ABSTRACT

The Green Wave Hypothesis posits that herbivore migration manifests in response to waves of spring green-up (i.e. green-wave surfing). Nonetheless, empirical support for the Green Wave Hypothesis is mixed, and a framework for understanding variation in surfing is lacking. In a population of migratory mule deer (Odocoileus hemionus), 31% surfed plant phenology in spring as well as a theoretically perfect surfer, and 98% surfed better than random. Green-wave surfing varied among individuals and was unrelated to age or energetic state. Instead, the greenscape, which we define as the order, rate and duration of green-up along migratory routes, was the primary factor influencing surfing. Our results indicate that migratory routes are more than a link between seasonal ranges, and they provide an important, but often overlooked, foraging habitat. In addition, the spatiotemporal configuration of forage resources that propagate along migratory routes shape animal movement and presumably, energy gains during migration.


Subject(s)
Animal Migration , Deer , Herbivory , Animals , Ecosystem , Seasons
13.
Glob Chang Biol ; 23(11): 4521-4529, 2017 11.
Article in English | MEDLINE | ID: mdl-28375581

ABSTRACT

As the extent and intensity of energy development in North America increases, so do disturbances to wildlife and the habitats they rely upon. Impacts to mule deer are of particular concern because some of the largest gas fields in the USA overlap critical winter ranges. Short-term studies of 2-3 years have shown that mule deer and other ungulates avoid energy infrastructure; however, there remains a common perception that ungulates habituate to energy development, and thus, the potential for a demographic effect is low. We used telemetry data from 187 individual deer across a 17-year period, including 2 years predevelopment and 15 years during development, to determine whether mule deer habituated to natural gas development and if their response to disturbance varied with winter severity. Concurrently, we measured abundance of mule deer to indirectly link behavior with demography. Mule deer consistently avoided energy infrastructure through the 15-year period of development and used habitats that were an average of 913 m further from well pads compared with predevelopment patterns of habitat use. Even during the last 3 years of study, when most wells were in production and reclamation efforts underway, mule deer remained >1 km away from well pads. The magnitude of avoidance behavior, however, was mediated by winter severity, where aversion to well pads decreased as winter severity increased. Mule deer abundance declined by 36% during the development period, despite aggressive onsite mitigation efforts (e.g. directional drilling and liquid gathering systems) and a 45% reduction in deer harvest. Our results indicate behavioral effects of energy development on mule deer are long term and may affect population abundance by displacing animals and thereby functionally reducing the amount of available habitat.


Subject(s)
Deer/physiology , Ecosystem , Energy-Generating Resources , Animals , Male , North America , Oil and Gas Fields , Seasons
14.
Ecol Appl ; 27(8): 2303-2312, 2017 12.
Article in English | MEDLINE | ID: mdl-28777884

ABSTRACT

Glucocorticoids (GC) and triiodothyronine (T3) are two endocrine markers commonly used to quantify resource limitation, yet the relationships between these markers and the energetic state of animals has been studied primarily in small-bodied species in captivity. Free-ranging animals, however, adjust energy intake in accordance with their energy reserves, a behavior known as state-dependent foraging. Further, links between life-history strategies and metabolic allometries cause energy intake and energy reserves to be more strongly coupled in small animals relative to large animals. Because GC and T3 may reflect energy intake or energy reserves, state-dependent foraging and body size may cause endocrine-energy relationships to vary among taxa and environments. To extend the utility of endocrine markers to large-bodied, free-ranging animals, we evaluated how state-dependent foraging, energy reserves, and energy intake influenced fecal GC and fecal T3 concentrations in free-ranging moose (Alces alces). Compared with individuals possessing abundant energy reserves, individuals with few energy reserves had higher energy intake and high fecal T3 concentrations, thereby supporting state-dependent foraging. Although fecal GC did not vary strongly with energy reserves, individuals with higher fecal GC tended to have fewer energy reserves and substantially greater energy intake than those with low fecal GC. Consequently, individuals with greater energy intake had both high fecal T3 and high fecal GC concentrations, a pattern inconsistent with previous documentation from captive animal studies. We posit that a positive relationship between GC and T3 may be expected in animals exhibiting state-dependent foraging if GC is associated with increased foraging and energy intake. Thus, we recommend that additional investigations of GC- and T3-energy relationships be conducted in free-ranging animals across a diversity of body size and life-history strategies before these endocrine markers are applied broadly to wildlife conservation and management.


Subject(s)
Conservation of Natural Resources , Deer/physiology , Endocrine System/physiology , Energy Intake , Energy Metabolism , Animals , Feeding Behavior , Wyoming
15.
Proc Biol Sci ; 283(1833)2016 06 29.
Article in English | MEDLINE | ID: mdl-27335416

ABSTRACT

The green wave hypothesis (GWH) states that migrating animals should track or 'surf' high-quality forage at the leading edge of spring green-up. To index such high-quality forage, recent work proposed the instantaneous rate of green-up (IRG), i.e. rate of change in the normalized difference vegetation index over time. Despite this important advancement, no study has tested the assumption that herbivores select habitat patches at peak IRG. We evaluated this assumption using step selection functions parametrized with movement data during the green-up period from two populations each of bighorn sheep, mule deer, elk, moose and bison, totalling 463 individuals monitored 1-3 years from 2004 to 2014. Accounting for variables that typically influence habitat selection for each species, we found seven of 10 populations selected patches exhibiting high IRG-supporting the GWH. Nonetheless, large herbivores selected for the leading edge, trailing edge and crest of the IRG wave, indicating that other mechanisms (e.g. ruminant physiology) or measurement error inherent with satellite data affect selection for IRG. Our evaluation indicates that IRG is a useful tool for linking herbivore movement with plant phenology, paving the way for significant advancements in understanding how animals track resource quality that varies both spatially and temporally.


Subject(s)
Ecosystem , Herbivory , Seasons , Animal Migration , Animals , Bison , Deer , Plants , Sheep , Spatio-Temporal Analysis
16.
Oecologia ; 181(3): 709-20, 2016 07.
Article in English | MEDLINE | ID: mdl-27003702

ABSTRACT

Animals may partially overcome environmental constraints on fitness by behaviorally adjusting their exposure to costs and supplies of energy. Few studies, however, have linked spatiotemporal variation in the energy landscape to behaviorally mediated measures of performance that ostensibly influence individual fitness. We hypothesized that strength of selection by North American elk (Cervus elaphus) for areas that reduced costs of thermoregulation and activity, and increased access to high-quality forage, would influence four energetically mediated traits related to fitness: birth mass of young, nutritional condition of adult females at the onset of winter, change in nutritional condition of females between spring and winter, and neonatal survival. We used a biophysical model to map spatiotemporally explicit costs of thermoregulation and activity experienced by elk in a heterogeneous landscape. We then combined model predictions with data on forage characteristics, animal locations, nutritional condition, and mass and survival of young to evaluate behaviorally mediated effects of the energy landscape on fitness-related traits. During spring, when high-quality forage was abundant, female elk that consistently selected low-cost areas before parturition gave birth to larger young than less-selective individuals, and birth mass had a strong, positive influence on probability of survival. As forage quality declined during autumn, however, lactating females that consistently selected the highest quality forage available accrued more fat and entered winter in better condition than less-selective individuals. Results of our study highlight the importance of understanding the dynamic nature of energy landscapes experienced by free-ranging animals.


Subject(s)
Herbivory , Lactation , Animals , Deer , Ecosystem , Humans
17.
Oecologia ; 178(4): 1137-48, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25820750

ABSTRACT

Climate plays a fundamental role in limiting the range of a species, is a key factor in the dynamics of large herbivores, and is thought to be involved in declines of moose populations in recent decades. We examined effects of climate and growing-season phenology on recruitment (8-9 months old) of young Shiras moose (Alces alces shirasi) over three decades, from 18 herds, across a large geographic area encompassing much of the southern extent of their range. Recruitment declined in 8 of 18 herds during 1980-2009, whereas others did not exhibit a temporal trend (none showed a positive trend). During those three decades, seasonal temperatures increased, spring-summer precipitation decreased, and spring occurred earlier, became shorter in duration, and green-up occurred faster. Recruitment was influenced negatively by warm temperatures during the year before young were born, but only for herds with declining recruitment. Dry spring-summers of the previous year and rapid rates of spring green-up in the year of birth had similar negative influences across declining and stable herds. Those patterns indicate both direct (year(t)) and delayed (year(t-1)) effects of weather and plant phenology on recruitment of young, which we hypothesize was mediated through effects on maternal nutritional condition. Suppressed nutrition could have been induced by (1) increased thermoregulatory costs associated with warming temperatures and (2) shortened duration of availability of high-quality forage in spring. Progressive reductions in net energetic gain for species that are sensitive to climate may continue to hamper individual fitness and population dynamics.


Subject(s)
Climate , Deer , Ecosystem , Plants , Weather , Animals , Climate Change , Female , Male , Population Dynamics , Seasons , Southwestern United States , Temperature , Time Factors , Wyoming
18.
Ecol Appl ; 24(7): 1769-79, 2014.
Article in English | MEDLINE | ID: mdl-29210236

ABSTRACT

Conservation of migration requires information on behavior and environmental determinants. The spatial distribution of forage resources, which migration exploits, often are altered and may have subtle, unintended consequences. Supplemental feeding is a common management practice, particularly for ungulates in North America and Europe, and carryover effects on behavior of this anthropogenic manipulation of forage are expected in theory, but have received limited empirical evaluation, particularly regarding effects on migration. We used global positioning system (GPS) data to evaluate the influence of winter feeding on migration behavior of 219 adult female elk (Cervus elaphus) from 18 fed ranges and 4 unfed ranges in western Wyoming. Principal component analysis revealed that the migratory behavior of fed and unfed elk differed in distance migrated, and the timing of arrival to, duration on, and departure from summer range. Fed elk migrated 19.2 km less, spent 11 more days on stopover sites, arrived to summer range 5 days later, resided on summer range 26 fewer days, and departed in the autumn 10 days earlier than unfed elk. Time-to-event models indicated that differences in migratory behavior between fed and unfed elk were caused by altered sensitivity to the environmental drivers of migration. In spring, unfed elk migrated following plant green-up closely, whereas fed elk departed the feedground but lingered on transitional range, thereby delaying their arrival to summer range. In autumn, fed elk were more responsive to low temperatures and precipitation events, causing earlier departure from summer range than unfed elk. Overall, supplemental feeding disconnected migration by fed elk from spring green-up and decreased time spent on summer range, thereby reducing access to quality forage. Our findings suggest that ungulate migration can be substantially altered by changes to the spatial distribution of resources, including those of anthropogenic origin, and that management practices applied in one season may have unintended behavioral consequences in subsequent seasons.


Subject(s)
Animal Feed , Animal Migration , Deer/physiology , Feeding Behavior , Animals , Ecosystem , Environmental Monitoring , Humans , Models, Biological , Wyoming
19.
Conserv Physiol ; 12(1): coae029, 2024.
Article in English | MEDLINE | ID: mdl-38779433

ABSTRACT

Accretion of body fat by animals is an important physiological adaptation that may underpin seasonal behaviours, especially where it modulates risk associated with a particular behaviour. Using movement data from male Sierra Nevada bighorn sheep (Ovis canadensis sierrae), we tested the hypothesis that migratory behaviours were risk-sensitive to physiological state (indexed by body fat). Sierra bighorn face severe winter conditions at high elevations and higher predation risk at lower elevations. Given that large body fat stores ameliorate starvation risk, we predicted that having small body fat stores would force animals to migrate to lower elevations with more abundant food supplies. We also predicted that body fat stores would influence how far animals migrate, with the skinniest animals migrating the furthest down in elevation (to access the most abundant food supplies at that time of year). Lastly, we predicted that population-level rates of switching between migratory tactics would be inversely related to body fat levels because as body fat levels decrease, animals exhibiting migratory plasticity should modulate their risk of starvation by switching migratory tactics. Consistent with our predictions, probability of migration and elevational distance migrated increased with decreasing body fat, but effects differed amongst metapopulations. Population-level switching rates also were inversely related to population-level measures of body fat prior to migration. Collectively, our findings suggest migration was risk-sensitive to physiological state, and failure to accrete adequate fat may force animals to make trade-offs between starvation and predation risk. In complex seasonal environments, risk-sensitive migration yields a layer of flexibility that should aid long-term persistence of animals that can best modulate their risk by attuning behaviour to physiological state.

20.
Ecology ; 105(4): e4238, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212148

ABSTRACT

Growing evidence supports the hypothesis that temperate herbivores surf the green wave of emerging plants during spring migration. Despite the importance of autumn migration, few studies have conceptualized resource tracking of temperate herbivores during this critical season. We adapted the frost wave hypothesis (FWH), which posits that animals pace their autumn migration to reduce exposure to snow but increase acquisition of forage. We tested the FWH in a population of mule deer in Wyoming, USA by tracking the autumn migrations of n = 163 mule deer that moved 15-288 km from summer to winter range. Migrating deer experienced similar amounts of snow but 1.4-2.1 times more residual forage than if they had naïve knowledge of when or how fast to migrate. Importantly, deer balanced exposure to snow and forage in a spatial manner. At the fine scale, deer avoided snow near their mountainous summer ranges and became more risk prone to snow near winter range. Aligning with their higher tolerance of snow and lingering behavior to acquire residual forage, deer increased stopover use by 1 ± 1 day (95% CI) day for every 10% of their migration completed. Our findings support the prediction that mule deer pace their autumn migration with the onset of snow and residual forage, but refine the FWH to include movement behavior en route that is spatially dynamic.


Subject(s)
Deer , Animals , Animal Migration , Seasons , Herbivory , Equidae
SELECTION OF CITATIONS
SEARCH DETAIL