Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Microsc ; 258(2): 127-39, 2015 May.
Article in English | MEDLINE | ID: mdl-25639642

ABSTRACT

In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single-shot soft X-ray contact microscopy is presented. High resolved X-ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X-ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid-state X-ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X-ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X-ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high-quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.


Subject(s)
Fluorides , Lithium Compounds , Microscopy/methods , Animals , Chlamydomonas/ultrastructure , Cyanobacteria/ultrastructure , Lasers , Macrophages/ultrastructure , Mice , RAW 264.7 Cells , X-Rays
2.
J Phys Condens Matter ; 36(21)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38364273

ABSTRACT

Passive solid-state radiation detectors, based on the visible photoluminescence (PL) of radiation-induced colour centres in optically transparent lithium fluoride (LiF), polycrystalline thin films are under investigation for proton beam advanced diagnostics. After proton exposure, the latent images stored in LiF as local formations of stable F2and F3+aggregate defects, are directly read with a fluorescence microscope under illumination in the blue spectral range. Adopting a suitable irradiation geometry, the energy density that protons deposit in the material can be recorded as a spatial distribution of these light-emitting defects, from which a luminous replica of the proton Bragg curve can be thereafter extracted and analysed to reconstruct the proton beam energy spectrum. Their peculiar properties, such as wide dynamic range and linearity of the spectrally-integrated PL response vs. dose, make the investigation of two-dimensional LiF film radiation detectors grown on several types of substrate highly attractive. Here, the case of a LiF thin film thermally evaporated on a silica substrate, irradiated at grazing incidence with a 35 MeV proton beam, is investigated and reported for the first time. A comparison of the measured photoluminescent Bragg curve with Monte Carlo simulations demonstrates that the Bragg peak in the film is located at the very same position that would be expected in the underlying silica substrate rather than in LiF. The film packing density is shown not to have a significant effect on the peak depth, while even small nonzero grazing angle of the impinging proton beam is able to significantly modify the shape of the Bragg curve. These findings are ascribed to the effects of multiple Coulomb scattering in both the film and the substrate and are interesting for proton beam diagnostics and dosimetry.

3.
J Phys Condens Matter ; 36(20)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38330460

ABSTRACT

Nominally-pure lithium fluoride (LiF) crystals were irradiated with monochromatic hard x-rays of energy 5, 7, 9 and 12 keV at the METROLOGIE beamline of the SOLEIL synchrotron facility, in order to understand the role of the selected x-ray energy on their visible photoluminescence (PL) response, which is used for high spatial resolution 2D x-ray imaging detectors characterized by a wide dynamic range. At the energies of 7 and 12 keV the irradiations were performed at five different doses corresponding to five uniformly irradiated areas, while at 5 and 9 keV only two irradiations at two different doses were carried out. The doses were planned in a range between 4 and 1.4 × 103Gy (10.5 mJ cm-3to 3.7 J cm-3), depending on the x-ray energy. After irradiation at the energies of 7 and 12 keV, the spectrally-integrated visible PL intensity of the F2and F3+colour centres (CCs) generated in the LiF crystals, carefully measured by fluorescence microscopy under blue excitation, exhibits a linear dependence on the irradiation dose in the investigated dose range. This linear behaviour was confirmed by the optical absorption spectra of the irradiated spots, which shows a similar linear behaviour for both the F2and F3+CCs, as derived from their overlapping absorption band at around 450 nm. At the highest x-ray energy, the average concentrations of the radiation-induced F, F2and F3+CCs were also estimated. The volume distributions of F2defects in the crystals irradiated with 5 and 9 keV x-rays were reconstructed in 3D by measuring their PL signal using a confocal laser scanning microscope operating in fluorescence mode. On-going investigations are focusing on the results obtained through thisz-scanning technique to explore the potential impact of absorption effects at the excitation laser wavelength.

4.
G Ital Med Lav Ergon ; 33(3 Suppl): 391-4, 2011.
Article in Italian | MEDLINE | ID: mdl-23393884

ABSTRACT

Lithium fluoride is a well known material used for dosimetry. In the last years it was proposed and tested also as imaging detector for X-ray microscopy. Optical microscopy represents the oldest and most used imaging technique for medicine and cell biology investigations; later other imaging techniques, including electron microscopy, were introduced. The recent technological developments in the soft X-ray field, concerning sources, optics and detectors, have been increased the interest of physicians and biologists for X-ray microscopy, mainly to obtain in vivo imaging of cells. An innovative imaging detector has been proposed and tested by researchers of C.R. ENEA Frascati, as handy, versatile and compact plate for soft X-ray imaging with very high spatial resolution, wide dynamic range, large field of view and easy to read by an optical microscope. Scientific and technological applications can be foreseen in several fields, as nanotechnologies, materials, photonics, life science and microscopy (including cell imaging, also in vivo).


Subject(s)
Fluorides , Lithium Compounds , X-Rays , Humans , Radiometry
5.
Radiat Prot Dosimetry ; 186(1): 113-118, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31141142

ABSTRACT

In the framework of the Italian TOP-IMPLART project (Regione Lazio), ENEA-Frascati, ISS and IFO are developing and constructing the first proton linear accelerator based on an actively scanned beam for tumor radiotherapy with final energy of 150 MeV. An important feature of this accelerator is modularity: an exploitable beam can be delivered at any stage of its construction, which allows for immediate characterization and virtually continuous improvement of its performance. Currently, a sequence of 3 GHz accelerating modules combined with a commercial injector operating at 425 MHz delivers protons up to 35 MeV. Several dosimetry systems were used to obtain preliminary characteristics of the 35-MeV beam in terms of stability and homogeneity. Short-term stability and homogeneity better than 3% and 2.6%, respectively, were demonstrated; for stability an improvement with respect to the respective value obtained for the previous 27 MeV beam.


Subject(s)
Particle Accelerators/instrumentation , Protons , Radiometry/instrumentation , Radiometry/methods , Equipment Design , Radiation Dosage
6.
J Microsc ; 229(Pt 3): 490-5, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18331500

ABSTRACT

In this work, we report a method to observe soft X-ray radiographs at nanoscale of various kind of samples, biological and metallic, stored in a thin layer of lithium fluoride, employing scanning near-field optical microscopy with an optical resolution that reaches 50 nm. Lithium fluoride material works as a novel image detector for X-ray nano-radiographs, due to the fact that extreme ultraviolet radiation and soft X-rays efficiently produce stable point defects emitting optically stimulated visible luminescence in a thin surface layer. The bi-dimensional distribution of the so-created defects depends on the local nanostructure of the investigated sample.


Subject(s)
Fluorides , Lithium Compounds , Microscopy, Scanning Probe , Radiography , Crystallization , Microscopy, Confocal , Microscopy, Fluorescence , Nanotechnology/instrumentation , Nanotechnology/methods , Olea/ultrastructure , Pollen/ultrastructure , Radiography/instrumentation , Radiography/methods , X-Rays
7.
Radiat Prot Dosimetry ; 180(1-4): 329-333, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29385620

ABSTRACT

The first proton linear accelerator for tumor therapy based on an actively scanned beam up to the energy of 150 MeV, is under development and construction by ENEA-Frascati, ISS and IFO, under the Italian TOP-IMPLART project. Protons up to the energy of 7 MeV are generated by a customized commercial injector operating at 425 MHz; currently three accelerating modules allow proton delivery with energy up to 27 MeV. Beam homogeneity and reproducibility were studied using a 2D ionizing chamber, EBT3 films, a silicon diode, MOSFETs, LiF crystals and alanine dosimetry systems. Measurements were taken in air with the detectors at ~1 m from the beam line exit window. The maximum energy impinging on the detectors surface was 24.1 MeV, an energy suitable for radiobiological studies. Results showed beam reproducibility within 5% and homogeneity within 4%, on a circular surface of 16 mm in diameter.


Subject(s)
Film Dosimetry/instrumentation , Film Dosimetry/methods , Particle Accelerators/instrumentation , Protons , Fluorides/chemistry , Linear Energy Transfer , Lithium Compounds/chemistry , Silicon/chemistry
8.
Med Phys ; 42(8): 4678-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26233195

ABSTRACT

PURPOSE: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference (60)Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. METHODS: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a (60)Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. RESULTS: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to (60)Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in the 2-40 Gy/min range. Short- and long-term scanner stabilities were 0.5% and 1.5%, respectively; film uniformity and reproducibility were better than 0.5%. CONCLUSIONS: The main purpose of this study was to implement EBT3 dosimetry in the proton low-energy radiobiology line of the TOP-IMPLART accelerator, having a maximum energy of 7 MeV. Low-energy proton and (60)Co calibrated sources were used to investigate the behavior of film response vs to be written in italicum dose. The calibration in 5 MeV protons is currently used for dose assessment in the radiobiological experiments at the TOP-IMPLART accelerator carried out at that energy value.


Subject(s)
Film Dosimetry/methods , Air , Calibration , Cobalt Radioisotopes/therapeutic use , Film Dosimetry/instrumentation , Gamma Rays , Proton Therapy , Radiation Dosage , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Silicon , Water
9.
Opt Express ; 9(7): 353-9, 2001 Sep 24.
Article in English | MEDLINE | ID: mdl-19421306

ABSTRACT

We report fluorescence imaging of colour centres in Lithium Fluoride (LiF) using an apertureless Scanning Near Field Optical Microscope (SNOM). The sample consists of periodically spaced submicrometric coloured areas F2 laser-active colour centres produced by low-energy electron beam lithography on the surface of a LiF thin film. A silicon Atomic Force Microscope (AFM) tip is used as an apertureless optical probe. AFM images show a uniform surface roughness with a RMS of 7.2 nm. The SNOM images of the red fluorescence of colour centres excited at lambda = 458 nm with an argon ion laser show that the local photon emission is unambiguously related to the coloured areas and that topographic artefacts can be excluded.

10.
J Nanosci Nanotechnol ; 3(6): 483-6, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15002126

ABSTRACT

X-ray microradiographs of small biological objects, such as animals and plant materials at micrometric resolution, are currently performed by various methods, all of which are limited by the resolution or the dynamic range of the image detectors. Here a novel X-ray image detector is discussed, in which the previous limitations have been overcome. A film of lithium fluoride salt is used as a detector, in which the stored biological image is read by observing the optically stimulated visible luminescence of the active color centers, efficiently produced by the X-rays.


Subject(s)
Electron Probe Microanalysis/instrumentation , Fluorides/chemistry , Lithium Compounds/chemistry , Microscopy, Fluorescence/instrumentation , Nanotechnology/instrumentation , Radiography/instrumentation , Wings, Animal/diagnostic imaging , X-Ray Intensifying Screens , Animals , Crystallization/methods , Diptera , Electron Probe Microanalysis/methods , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Fluorides/radiation effects , Insecta , Lithium Compounds/radiation effects , Microscopy, Fluorescence/methods , Nanotechnology/methods , Radiography/methods , Reproducibility of Results , Sensitivity and Specificity , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL