Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Cell ; 184(25): 6081-6100.e26, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34861191

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Pancreatic Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Line, Tumor , HEK293 Cells , Humans , Inhibitor of Differentiation Proteins/immunology , Male , Mice , Mice, Knockout , Mice, Nude , Mice, SCID , Neoplasm Proteins/immunology , SOXC Transcription Factors/immunology
2.
Mol Ther ; 29(2): 658-670, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33160076

ABSTRACT

Gene-mediated cytotoxic immunotherapy (GMCI) is an immuno-oncology approach involving local delivery of a replication-deficient adenovirus expressing herpes simplex thymidine kinase (AdV-tk) followed by anti-herpetic prodrug activation that promotes immunogenic tumor cell death, antigen-presenting cell activation, and T cell stimulation. This phase I dose-escalation pilot trial assessed bronchoscopic delivery of AdV-tk in patients with suspected lung cancer who were candidates for surgery. A single intra-tumoral AdV-tk injection in three dose cohorts (maximum 1012 viral particles) was performed during diagnostic staging, followed by a 14-day course of the prodrug valacyclovir, and subsequent surgery 1 week later. Twelve patients participated after appropriate informed consent. Vector-related adverse events were minimal. Immune biomarkers were evaluated in tumor and blood before and after GMCI. Significantly increased infiltration of CD8+ T cells was found in resected tumors. Expression of activation, inhibitory, and proliferation markers, such as human leukocyte antigen (HLA)-DR, CD38, Ki67, PD-1, CD39, and CTLA-4, were significantly increased in both the tumor and peripheral CD8+ T cells. Thus, intratumoral AdV-tk injection into non-small-cell lung cancer (NSCLC) proved safe and feasible, and it effectively induced CD8+ T cell activation. These data provide a foundation for additional clinical trials of GMCI for lung cancer patients with potential benefit if combined with other immune therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Genetic Therapy , Immunotherapy/methods , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Adenoviridae/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cytotoxicity, Immunologic , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Lung Neoplasms/pathology , Neoadjuvant Therapy , Thymidine Kinase/genetics
3.
Mol Ther ; 28(7): 1600-1613, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32559430

ABSTRACT

Chimeric antigen receptor (CAR)-modified T cells are endowed with novel antigen specificity and are most often administered to patients without an engineered mechanism to control the CAR T cells once infused. "Suicide switches" such as the small molecule-controlled, inducible caspase-9 (iCas9) system afford the ability to selectively eliminate engineered T cells; however, these approaches are designed for all-or-none, irreversible termination of an ongoing immune response. In order to permit reversible and adjustable modulation, we have created a CAR that is capable of on-demand downregulation by fusing the CAR to a previously developed ligand-induced degradation (LID) domain. Addition of a small molecule ligand triggers exposure of a cryptic degron within the LID domain, resulting in proteasomal degradation of the CAR-LID fusion protein and loss of CAR on the surface of T cells. This fusion construct allowed for reversible and "tunable" inhibition of CAR T cell activity in vitro. Delivery of the triggering molecule in CAR-LID-treated tumor-bearing mice temporarily reduced CAR activity through modulation of CAR surface expression. The ability to more flexibly modulate CAR T cell expression through a small molecule provides a platform for controlling possible adverse side effects, as well as preclinical investigations of CAR T cell biology.


Subject(s)
Morpholines/chemistry , Neoplasms/therapy , Receptors, Chimeric Antigen/metabolism , Recombinant Fusion Proteins/chemistry , Small Molecule Libraries/administration & dosage , T-Lymphocytes/transplantation , Animals , Cell Line, Tumor , Cell Proliferation , Female , Humans , Immunotherapy, Adoptive , Ligands , Mice , Neoplasm Transplantation , Neoplasms/immunology , Proteasome Endopeptidase Complex/metabolism , Protein Domains , Proteolysis , Receptors, Chimeric Antigen/chemistry , Recombinant Fusion Proteins/metabolism , Small Molecule Libraries/pharmacology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
4.
Mol Ther ; 27(11): 1919-1929, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31420241

ABSTRACT

This phase I study investigated the safety and activity of lentiviral-transduced chimeric antigen receptor (CAR)-modified autologous T cells redirected against mesothelin (CART-meso) in patients with malignant pleural mesothelioma, ovarian carcinoma, and pancreatic ductal adenocarcinoma. Fifteen patients with chemotherapy-refractory cancer (n = 5 per indication) were treated with a single CART-meso cell infusion. CART-meso cells were engineered by lentiviral transduction with a construct composed of the anti-mesothelin single-chain variable fragment derived from the mouse monoclonal antibody SS1 fused to intracellular signaling domains of 4-1BB and CD3zeta. Patients received 1-3 × 107 or 1-3 × 108 CART-meso cells/m2 with or without 1.5 g/m2 cyclophosphamide. Lentiviral-transduced CART-meso cells were well tolerated; one dose-limiting toxicity (grade 4, sepsis) occurred at 1-3 × 107/m2 CART-meso without cyclophosphamide. The best overall response was stable disease (11/15 patients). CART-meso cells expanded in the blood and reached peak levels by days 6-14 but persisted transiently. Cyclophosphamide pre-treatment enhanced CART-meso expansion but did not improve persistence beyond 28 days. CART-meso DNA was detected in 7/10 tumor biopsies. Human anti-chimeric antibodies (HACA) were detected in the blood of 8/14 patients. CART-meso cells were well tolerated and expanded in the blood of all patients but showed limited clinical activity. Studies evaluating a fully human anti-mesothelin CAR are ongoing.


Subject(s)
GPI-Linked Proteins/immunology , Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Aged , Biomarkers , Female , GPI-Linked Proteins/antagonists & inhibitors , Genetic Therapy , Genetic Vectors/genetics , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Lentivirus/genetics , Male , Mesothelin , Middle Aged , Neoplasm Staging , Neoplasms/diagnosis , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Tomography, X-Ray Computed
5.
Am J Physiol Lung Cell Mol Physiol ; 317(2): L271-L282, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31188013

ABSTRACT

Fibroblast activation protein (FAP), a cell surface serine protease, is upregulated on a subset of activated fibroblasts (often distinct from α-smooth muscle actin-expressing myofibroblasts) associated with matrix remodeling, including fibroblasts in idiopathic pulmonary fibrosis (Acharya PS, Zukas A, Chandan V, Katzenstein AL, Puré E. Hum Pathol 37: 352-360, 2006.). As FAP+ fibroblasts could be pivotal in either breakdown and/or production of collagen and other matrix components, the goal of this study was to define the role of FAP+ cells in pulmonary fibrosis in two established, but different, mouse models of chronic lung fibrosis: repetitive doses of intratracheal bleomycin and a single dose of an adenoviral vector encoding constitutively active TGF-ß1 (Ad-TGFß). To determine their role in fibrotic remodeling, FAP-expressing cells were depleted by injection of T cells expressing a chimeric antigen receptor specific for murine FAP in mice with established fibrosis. The contribution of FAP to the function of FAP-expressing cells was assessed in FAP knockout mice. Using histological analyses, quantification of soluble collagen content, and flow cytometry, we found that loss of FAP+ cells exacerbated fibrosis in the bleomycin model, a phenotype largely recapitulated by the genetic deletion of FAP, indicating that FAP plays a role in this model. In contrast, depletion of FAP+ cells or genetic deletion of FAP had little effect in the Ad-TGFß model highlighting the potential for distinct mechanisms driving fibrosis depending on the initiating insult. The role of FAP in human lung fibrosis will need to be well understood to guide the use of FAP-targeted therapeutics that are being developed.


Subject(s)
Cell Differentiation/drug effects , Fibroblasts/metabolism , Fibrosis/chemically induced , Transforming Growth Factor beta/metabolism , Animals , Bleomycin/pharmacology , Collagen/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Mice, Inbred C57BL , Mice, Transgenic , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Transforming Growth Factor beta1/metabolism
6.
Annu Rev Med ; 68: 139-152, 2017 01 14.
Article in English | MEDLINE | ID: mdl-27860544

ABSTRACT

The field of cancer immunotherapy has been re-energized by the application of chimeric antigen receptor (CAR) T cell therapy in cancers. These CAR T cells are engineered to express synthetic receptors that redirect polyclonal T cells to surface antigens for subsequent tumor elimination. Many CARs are designed with elements that augment T cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematologic malignancies (e.g., CD19 CARs in leukemias). However, this success has yet to be extrapolated to solid tumors, and the reasons for this are being actively investigated. We characterize some of the challenges that CAR T cells have to surmount in the solid tumor microenvironment and new approaches that are being considered to overcome these hurdles.


Subject(s)
Antigens, Neoplasm/immunology , Immunotherapy, Adoptive/methods , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/therapeutic use , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Humans , Immune Tolerance , Immunity, Cellular , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, Antigen, T-Cell/immunology
8.
Proc Natl Acad Sci U S A ; 110(5): E415-24, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23271806

ABSTRACT

Each year, more than 700,000 people undergo cancer surgery in the United States. However, more than 40% of those patients develop recurrences and have a poor outcome. Traditionally, the medical community has assumed that recurrent tumors arise from selected tumor clones that are refractory to therapy. However, we found that tumor cells have few phenotypical differences after surgery. Thus, we propose an alternative explanation for the resistance of recurrent tumors. Surgery promotes inhibitory factors that allow lingering immunosuppressive cells to repopulate small pockets of residual disease quickly. Recurrent tumors and draining lymph nodes are infiltrated with M2 (CD11b(+)F4/80(hi)CD206(hi) and CD11b(+)F4/80(hi)CD124(hi)) macrophages and CD4(+)Foxp3(+) regulatory T cells. This complex network of immunosuppression in the surrounding tumor microenvironment explains the resistance of tumor recurrences to conventional cancer vaccines despite small tumor size, an intact antitumor immune response, and unaltered cancer cells. Therapeutic strategies coupling antitumor agents with inhibition of immunosuppressive cells potentially could impact the outcomes of more than 250,000 people each year.


Subject(s)
Cancer Vaccines/immunology , Neoplasm Recurrence, Local/immunology , Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Flow Cytometry , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Humans , Interleukin-4 Receptor alpha Subunit/immunology , Interleukin-4 Receptor alpha Subunit/metabolism , Kaplan-Meier Estimate , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/immunology , Mannose-Binding Lectins/metabolism , Mice , Mice, Inbred C57BL , Neoplasms/pathology , Neoplasms/surgery , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Treatment Failure , Vaccination/methods
10.
Cancer Res ; 84(7): 1029-1047, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38270915

ABSTRACT

The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE: The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.


Subject(s)
Neoplasms , Neutrophils , Humans , Neutrophils/metabolism , Tumor-Associated Macrophages/metabolism , Trogocytosis , Antibody-Dependent Cell Cytotoxicity , Phagocytosis , Neoplasms/pathology , Receptors, Fc , Antigens, Neoplasm
11.
Mol Ther ; 20(4): 736-48, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22008913

ABSTRACT

Since previous work using a nonreplicating adenovirus-expressing mouse interferon-ß (Ad.mIFNß) showed promising preclinical activity, we postulated that a vector-expressing IFNß at high levels that could also replicate would be even more beneficial. Accordingly a replication competent, recombinant vaccinia viral vector-expressing mIFNß (VV.mIFNß) was tested. VV.mIFNß-induced antitumor responses in two syngeneic mouse flank models of lung cancer. Although VV.mIFNß had equivalent in vivo efficacy in both murine tumor models, the mechanisms of tumor killing were completely different. In LKRM2 tumors, viral replication was minimal and the tumor killing mechanism was due to activation of immune responses through induction of a local inflammatory response and production of antitumor CD8 T-cells. In contrast, in TC-1 tumors, the vector replicated well, induced an innate immune response, but antitumor activity was primarily due to a direct oncolytic effect. However, the VV.mIFNß vector was able to augment the efficacy of an antitumor vaccine in the TC-1 tumor model in association with increased numbers of infiltrating CD8 T-cells. These data show the complex relationships between oncolytic viruses and the immune system which, if understood and harnessed correctly, could potentially be used to enhance the efficacy of immunotherapy.


Subject(s)
Immunotherapy/methods , Interferon-beta/metabolism , Vaccinia virus/genetics , Animals , Cell Line, Tumor , Female , Interferon-beta/genetics , Lung Neoplasms/therapy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Vaccinia virus/immunology , Virus Replication/genetics , Virus Replication/physiology
12.
Cell Rep Med ; 4(6): 101053, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37224816

ABSTRACT

Chimeric antigen receptor (CAR) T cells demonstrate remarkable success in treating hematological malignancies, but their effectiveness in non-hematopoietic cancers remains limited. This study proposes enhancing CAR T cell function and localization in solid tumors by modifying the epigenome governing tissue-residency adaptation and early memory differentiation. We identify that a key factor in human tissue-resident memory CAR T cell (CAR-TRM) formation is activation in the presence of the pleotropic cytokine, transforming growth factor ß (TGF-ß), which enforces a core program of both "stemness" and sustained tissue residency by mediating chromatin remodeling and concurrent transcriptional changes. This approach leads to a practical and clinically actionable in vitro production method for engineering peripheral blood T cells into a large number of "stem-like" CAR-TRM cells resistant to tumor-associated dysfunction, possessing an enhanced ability to accumulate in situ and rapidly eliminate cancer cells for more effective immunotherapy.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Cytokines/metabolism , Immunotherapy
13.
Am J Respir Crit Care Med ; 184(12): 1395-9, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21642245

ABSTRACT

New therapeutic strategies are needed for malignant pleural mesothelioma (MPM). We conducted a single-center, open-label, nonrandomized, pilot and feasibility trial using two intrapleural doses of an adenoviral vector encoding human IFN-α (Ad.IFN-α2b). Nine subjects were enrolled at two dose levels. The first three subjects had very high pleural and systemic IFN-α concentrations resulting in severe "flu-like" symptoms necessitating dose de-escalation. The next six patients had reduced (but still significant) pleural and serum IFN-α levels, but with tolerable symptoms. Repeated vector administration appeared to prolong IFN-α expression levels. Anti-tumor humoral immune responses against mesothelioma cell lines were seen in seven of the eight subjects evaluated. No clinical responses were seen in the four subjects with advanced disease. However, evidence of disease stability or tumor regression was seen in the remaining five patients, including one dramatic example of partial tumor regression at sites not in contiguity with vector infusion. These data show that Ad.IFN-α2b has potential therapeutic benefit in MPM and that it generates anti-tumor immune responses that may induce anatomic and/or metabolic reductions in distant tumor. Clinical trial registered with www.clinicaltrials.gov (NCT 01212367).


Subject(s)
Genetic Therapy , Immunologic Factors/administration & dosage , Interferon-alpha/administration & dosage , Mesothelioma/therapy , Pleural Neoplasms/therapy , Adenoviridae , Aged , Aged, 80 and over , Feasibility Studies , Female , Gene Transfer Techniques , Genetic Therapy/adverse effects , Genetic Vectors , Humans , Immunologic Factors/genetics , Interferon alpha-2 , Interferon-alpha/genetics , Male , Mesothelioma/diagnostic imaging , Mesothelioma/immunology , Middle Aged , Multimodal Imaging , Pilot Projects , Pleural Neoplasms/diagnostic imaging , Pleural Neoplasms/immunology , Positron-Emission Tomography , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Tomography, X-Ray Computed
14.
JTO Clin Res Rep ; 3(4): 100301, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35392653

ABSTRACT

Introduction: The availability of targeted therapies has transformed the management of advanced NSCLC; however, most patients do not undergo guideline-recommended tumor genotyping. The impact of plasma-based next-generation sequencing (NGS) performed simultaneously with diagnostic biopsy in suspected advanced NSCLC has largely been unexplored. Methods: We performed a prospective cohort study of patients with suspected advanced lung cancer on the basis of cross-sectional imaging results. Blood from the time of biopsy was sequenced using a commercially available 74-gene panel. The primary outcome measure was time to first-line systemic treatment compared with a retrospective cohort of consecutive patients with advanced NSCLC with reflex tissue NGS. Results: We analyzed the NGS results from 110 patients with newly diagnosed advanced NSCLC: cohorts 1 and 2 included 55 patients each and were well balanced regarding baseline demographics. In cohort 1, plasma NGS identified therapeutically informative driver mutations in 32 patients (58%) (13 KRAS [five KRAS G12C], 13 EGFR, two ERRB2, two MET, one BRAF, one RET). The NGS results were available before the first oncology visit in 85% of cohort 1 versus 9% in cohort 2 (p < 0.0001), with more cohort 1 patients receiving a guideline-concordant treatment recommendation at this visit (74% versus 46%, p = 0.005). Time-to-treatment was significantly shorter in cohort 1 compared with cohort 2 (12 versus 20 d, p = 0.003), with a shorter time-to-treatment in patients with specific driver mutations (10 versus 19 d, p = 0.001). Conclusions: Plasma-based NGS performed at the time of diagnostic biopsy in patients with suspected advanced NSCLC is associated with decreased time-to-treatment compared with usual care.

15.
Am J Respir Cell Mol Biol ; 45(3): 480-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21148741

ABSTRACT

Drugs that can rapidly inhibit respiratory infection from influenza or other respiratory pathogens are needed. One approach is to engage primary innate immune defenses against viral infection, such as activating the IFN pathway. In this study, we report that a small, cell-permeable compound called 5,6-di-methylxanthenone-4-acetic acid (DMXAA) can induce protection against vesicular stomatitis virus in vitro and H1N1 influenza A virus in vitro and in vivo through innate immune activation. Using the mouse C10 bronchial epithelial cell line and primary cultures of nasal epithelial cells, we demonstrate DMXAA activates the IFN regulatory factor-3 pathway leading to production of IFN-ß and subsequent high-level induction of IFN-ß-dependent proteins, such as myxovirus resistance 1 (Mx1) and 2',5'-oligoadenylate synthetase 1 (OAS1). Mice treated with DMXAA intranasally elevate mRNA/protein expression of Mx1 and OAS1 in the nasal mucosa, trachea, and lung. When challenged intranasally with a lethal dose of H1N1 influenza A virus, DMXAA reduced viral titers in the lungs and protected 80% of mice from death, even when given at 24 hours before infection. These data show that agents, like DMXAA, that can directly activate innate immune pathways, such as the IFN regulatory factor-3/IFN-ß system, in respiratory epithelial cells can be used to protect from influenza pneumonia and potentially in other respiratory viral infections. Development of this approach in humans could be valuable for protecting health care professionals and "first responders" in the early stages of viral pandemics or bioterror attacks.


Subject(s)
Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Virus Diseases/prevention & control , Animals , Antineoplastic Agents/pharmacology , Bronchi/virology , Epithelial Cells/virology , Female , Humans , Immune System , Immunity, Innate , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Respiratory Tract Infections/immunology , Virus Diseases/immunology , Xanthones/pharmacology
16.
Curr Treat Options Oncol ; 12(2): 173-80, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21519819

ABSTRACT

Mesothelioma represents an especially good target for gene therapy since few effective therapies exist, the disease remained relatively localized until late in its course, the tumor can be accessed relatively easily through the chest wall, and the thin layer of mesothelial cells offers a large surface area for efficient, rapid, and diffuse gene transfer. Gene therapy trials in mesothelioma have shown safety, and some limited evidence of efficacy. We present a review of clinical trials that have been performed in mesothelioma and describe several new approaches currently being pursued.


Subject(s)
Genetic Therapy , Mesothelioma/therapy , Pleural Neoplasms/therapy , Clinical Trials as Topic , Gene Transfer Techniques , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Mesothelioma/genetics , Mesothelioma/metabolism , Pleural Neoplasms/genetics , Pleural Neoplasms/metabolism , T-Lymphocytes/metabolism
17.
Mol Ther ; 18(4): 852-60, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20068553

ABSTRACT

We previously showed that a single intrapleural dose of an adenoviral vector expressing interferon-beta (Ad.IFN-beta) in patients with malignant pleural mesothelioma (MPM) or malignant pleural effusions (MPE) resulted in gene transfer, humoral antitumor immune responses, and anecdotal clinical responses manifested by modified Response Evaluation Criteria in Solid Tumors (RECIST) disease stability in 3 of 10 patients at 2 months and an additional patient with significant metabolic response on positron emission tomography (PET) imaging. This phase I trial was conducted to determine whether using two doses of Ad.IFN-beta vector would be superior. Ten patients with MPM and seven with MPE received two doses of Ad.IFN-beta through an indwelling pleural catheter. Repeated doses were generally well tolerated. High levels of IFN-beta were detected in pleural fluid after the first dose; however, only minimal levels were seen after the second dose of vector. Lack of expression correlated with the rapid induction of neutralizing Ad antibodies (Nabs). Antibody responses against tumor antigens were induced in most patients. At 2 months, modified RECIST responses were as follows: one partial response, two stable disease, nine progressive disease, and two nonmeasurable disease. One patient died after 1 month. By PET scanning, 2 patients had mixed responses and 11 had stable disease. There were seven patients with survival times longer than 18 months. This approach was safe, induced immune responses and disease stability. However, rapid development of Nabs prevented effective gene transfer after the second dose, even with a dose interval as short as 7 days.


Subject(s)
Adenoviridae , Genetic Therapy/methods , Interferon-beta/genetics , Lung Neoplasms/therapy , Mesothelioma/therapy , Ovarian Neoplasms/therapy , Pleural Effusion, Malignant/therapy , Aged , Aged, 80 and over , Female , Gene Transfer Techniques , Genetic Vectors , Humans , Male , Middle Aged , Pleural Cavity
18.
Oncoimmunology ; 10(1): 1873607, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33537176

ABSTRACT

PD1 blockade to reinvigorate T cells has become part of standard of care for patients with NSCLC across disease stages. However, the majority of patients still do not respond. One potential mechanism of resistance is increased expression of other checkpoint inhibitory molecules on T cells leading to their suppression; however, this phenomenon has not been well studied in tumor-reactive, human T cells. The purpose of this study was to evaluate this compensatory mechanism in a novel model using human effector T cells infiltrating and reactive against human lung cancer. Immunodeficient mice with flank tumors established from a human lung cancer cell line expressing the NYESO1 antigen were treated with activated human T cells expressing a TCR reactive to NYESO1 (Ly95) with or without anti-PD1 alone and with combinations of anti-PD1 plus anti-TIM3 or anti-TIGIT. A month later, the effect on tumor growth and the phenotype and ex vivo function of the TILs were analyzed. Anti-PD1 and Ly95 T cells led to greater tumor control than Ly95 T cells alone; however, tumors continued to grow. The ex-vivo function of PD1-blocked Ly95 TILs was suppressed and was associated with increased T cell expression of TIM3/TIGIT. Administering combinatorial blockade of PD1+ TIM3 or PD1+ TIGIT with Ly95 T cells led to greater tumor control than blocking PD1 alone. In our model, PD1 blockade was suboptimally therapeutic alone. The effect of TIM3 and TIGIT was upregulated on T cells in response to PD1 blockade and anti-tumor activity could be enhanced when these inhibitory receptors were also blocked with antibodies in combination with anti-PD1 therapy.


Subject(s)
Lymphocytes, Tumor-Infiltrating , T-Lymphocytes , Adoptive Transfer , Animals , Humans , Mice , Programmed Cell Death 1 Receptor , Receptors, Immunologic
19.
Cells ; 10(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34571983

ABSTRACT

The metabolic milieu of solid tumors provides a barrier to chimeric antigen receptor (CAR) T-cell therapies. Excessive lactate or hypoxia suppresses T-cell growth, through mechanisms including NADH buildup and the depletion of oxidized metabolites. NADH is converted into NAD+ by the enzyme Lactobacillus brevis NADH Oxidase (LbNOX), which mimics the oxidative function of the electron transport chain without generating ATP. Here we determine if LbNOX promotes human CAR T-cell metabolic activity and antitumor efficacy. CAR T-cells expressing LbNOX have enhanced oxygen as well as lactate consumption and increased pyruvate production. LbNOX renders CAR T-cells resilient to lactate dehydrogenase inhibition. But in vivo in a model of mesothelioma, CAR T-cell's expressing LbNOX showed no increased antitumor efficacy over control CAR T-cells. We hypothesize that T cells in hostile environments face dual metabolic stressors of excessive NADH and insufficient ATP production. Accordingly, futile T-cell NADH oxidation by LbNOX is insufficient to promote tumor clearance.


Subject(s)
Adenosine Triphosphate/metabolism , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Receptors, Antigen, T-Cell/metabolism , Adult , Animals , Female , Humans , Levilactobacillus brevis/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , NAD/metabolism , Oxidation-Reduction , T-Lymphocytes/metabolism
20.
Nat Commun ; 12(1): 4445, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290245

ABSTRACT

Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations. MCLA-145 potently activates T cells at sub-nanomolar concentrations, even under suppressive conditions, and enhances T cell priming, differentiation and memory recall responses. In vivo, MCLA-145 anti-tumor activity is superior to immune checkpoint inhibitor comparators and linked to recruitment and intra-tumor expansion of CD8 + T cells. No graft-versus-host-disease is observed in contrast to other antibodies inhibiting the PD-1 and PD-L1 pathway. Non-human primates treated with 100 mg/kg/week of MCLA-145 show no adverse effects. The conditional activation of CD137 signaling by MCLA-145, triggered by neighboring cells expressing >5000 copies of PD-L1, may provide both safety and potency advantages.


Subject(s)
4-1BB Ligand/agonists , Antibodies, Bispecific/pharmacology , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/drug effects , Immune Checkpoint Inhibitors/pharmacology , 4-1BB Ligand/immunology , Animals , Antibodies, Bispecific/immunology , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes , Humans , Immune Checkpoint Inhibitors/immunology , Immune Tolerance/drug effects , Immunologic Memory/drug effects , Immunotherapy , Lymphocyte Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL