Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biomed Res Int ; 2014: 489782, 2014.
Article in English | MEDLINE | ID: mdl-24895581

ABSTRACT

Despite the economic importance of caseous lymphadenitis (CLA), a chronic disease caused by Corynebacterium pseudotuberculosis, few genes related to the virulence of its etiologic agent have been characterized. The oligopeptide permease (Opp) transporters are located in the plasma membrane and have functions generally related to the uptake of peptides from the extracellular environment. These peptide transporters, in addition to having an important role in cell nutrition, also participate in the regulation of various processes involving intercellular signaling, including the control of the expression of virulence genes in pathogenic bacteria. To study the role of Opp in C. pseudotuberculosis, an OppD deficient strain was constructed via simple crossover with a nonreplicative plasmid carrying part of the oppD gene sequence. As occurred to the wild-type, the ΔoppD strain showed impaired growth when exposed to the toxic glutathione peptide (GSH), indicating two possible scenarios: (i) that this component can be internalized by the bacterium through an Opp-independent pathway or (ii) that there is toxicity while the peptide is extracellular. Additionally, the ΔoppD mutant presented a reduced ability to adhere to and infect macrophages compared to the wild-type, although both strains exhibit the same potential to colonize spleens and cause injury and death to infected mice.


Subject(s)
Bacterial Proteins/genetics , Biological Transport/genetics , Corynebacterium pseudotuberculosis/genetics , Lymphadenitis/genetics , Membrane Transport Proteins/genetics , Animals , Bacterial Proteins/metabolism , Corynebacterium pseudotuberculosis/enzymology , Corynebacterium pseudotuberculosis/pathogenicity , Humans , Lymphadenitis/microbiology , Lymphadenitis/pathology , Membrane Transport Proteins/metabolism , Mice , Mutation , Operon/genetics
2.
Front Microbiol ; 3: 126, 2012.
Article in English | MEDLINE | ID: mdl-22514549

ABSTRACT

Pathogenic intracellular bacteria can respond to antimicrobial mechanisms of the host cell through transient activation of stress-responsive genes by alternative sigma (σ) factors of the RNA polymerase. We evaluated the contribution of the extracytoplasmic function sigma factor σ(E) for Corynebacterium pseudotuberculosis resistance to stress conditions resembling those found intracellularly during infection. A sigE-null mutant strain (ΔsigE) of this bacterium was more susceptible in vitro to acidic pH, cell surface stressors, and biologically relevant concentrations of nitric oxide (NO). The same mutant strain was unable to persist in C57BL/6 mice but remained infective in mice lacking inducible nitric oxide synthase (iNOS), confirming the significance of σ(E) for resistance to nitric oxide/peroxide stress in vivo. High-throughput proteomic analysis identified NO-responsive extracellular proteins of C. pseudotuberculosis and demonstrated the participation of σ(E) in composition of this bacterium's exoproteome.

3.
PLoS One ; 6(4): e18551, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21533164

ABSTRACT

BACKGROUND: Corynebacterium pseudotuberculosis, a gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. METHODOLOGY AND FINDINGS: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. CONCLUSIONS: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.


Subject(s)
Corynebacterium pseudotuberculosis/pathogenicity , Evolution, Molecular , Genome, Bacterial , Virulence/genetics , Corynebacterium pseudotuberculosis/genetics
4.
Microbiol Res ; 165(4): 312-20, 2010 May 30.
Article in English | MEDLINE | ID: mdl-19720513

ABSTRACT

Corynebacterium pseudotuberculosis is an intracellular pathogen that causes Caseous lymphadenitis (CLA) disease in sheep and goats. The widespread occurrence and the economic importance of this pathogen have prompted investigation of its pathogenesis. We used a genomic library of C. pseudotuberculosis to generate 1440 genomic survey sequences (GSSs); these were analyzed in silico with bioinformatics tools, using public databases for comparative analyses. We employed non-redundant unique sequences as a query for BLAST searches against the genome, the translated genome and the proteome of four other Corynebacterium species that have been completely sequenced. We were able to characterize approximately 8% of the genome of C. pseudotuberculosis, including previously undescribed functional group genes, based on the COG database; the GSSs classification into categories gave 13% information storage and processing, 14% cellular processes and 23% metabolism. We found a close relation between C. pseudotuberculosis and C. diphtheriae conserved-gene synteny in Corynebacteria species.


Subject(s)
Corynebacterium pseudotuberculosis/genetics , Genes, Bacterial , Genome, Bacterial , Base Sequence , Corynebacterium pseudotuberculosis/classification , Corynebacterium pseudotuberculosis/pathogenicity , DNA, Bacterial , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL