Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
J Neurochem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38327008

ABSTRACT

The disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) plays a relevant role in Alzheimer's disease (AD). MAMs have been implicated in neuronal dysfunction and death since it is associated with impairment of functions regulated in this subcellular domain, including lipid synthesis and trafficking, mitochondria dysfunction, ER stress-induced unfolded protein response (UPR), apoptosis, and inflammation. Since MAMs play an important role in lipid metabolism, in this study we characterized and investigated the lipidome alterations at MAMs in comparison with other subcellular fractions, namely microsomes and mitochondria, using an in vitro model of AD, namely the mouse neuroblastoma cell line (N2A) over-expressing the APP familial Swedish mutation (APPswe) and the respective control (WT) cells. Phospholipids (PLs) and fatty acids (FAs) were isolated from the different subcellular fractions and analyzed by HILIC-LC-MS/MS and GC-MS, respectively. In this in vitro AD model, we observed a down-regulation in relative abundance of some phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) species with PUFA and few PC with saturated and long-chain FA. We also found an up-regulation of CL, and antioxidant alkyl acyl PL. Moreover, multivariate analysis indicated that each organelle has a specific lipid profile adaptation in N2A APPswe cells. In the FAs profile, we found an up-regulation of C16:0 in all subcellular fractions, a decrease of C18:0 levels in total fraction (TF) and microsomes fraction, and a down-regulation of 9-C18:1 was also found in mitochondria fraction in the AD model. Together, these results suggest that the over-expression of the familial APP Swedish mutation affects lipid homeostasis in MAMs and other subcellular fractions and supports the important role of lipids in AD physiopathology.

2.
Cell Mol Life Sci ; 79(9): 487, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35984507

ABSTRACT

Diabetes has been associated with an increased risk of cognitive decline and dementia. However, the mechanisms underlying this association remain unclear and no effective therapeutic interventions exist. Accumulating evidence demonstrates that mitochondrial defects are a key feature of diabetes contributing to neurodegenerative events. It has also been demonstrated that the putative tumor suppressor WW domain-containing oxidoreductase 1 (WWOX) can interact with mitochondria in several pathological conditions. However, its role in diabetes-associated neurodegeneration remains unknown. So, this study aimed to evaluate the role of WWOX activation in high glucose-induced neuronal damage and death. Our experiments were mainly performed in differentiated SH-SY5Y neuroblastoma cells exposed to high glucose and treated (or not) with Zfra1-31, the specific inhibitor of WWOX. Several parameters were analyzed namely cell viability, WWOX activation (tyrosine 33 residue phosphorylation), mitochondrial function, reactive oxygen species (ROS) production, biogenesis, and dynamics, autophagy and oxidative stress/damage. The levels of the neurotoxic proteins amyloid ß (Aß) and phosphorylated Tau (pTau) and of synaptic integrity markers were also evaluated. We observed that high glucose increased the levels of activated WWOX. Interestingly, brain cortical and hippocampal homogenates from young (6-month old) diabetic GK rats showed increased levels of activated WWOX compared to older GK rats (12-month old) suggesting that WWOX plays an early role in the diabetic brain. In neuronal cells, high glucose impaired mitochondrial respiration, dynamics and biogenesis, increased mitochondrial ROS production and decreased mitochondrial membrane potential and ATP production. More, high glucose augmented oxidative stress/damage and the levels of Aß and pTau proteins and affected autophagy, contributing to the loss of synaptic integrity and cell death. Of note, the activation of WWOX preceded mitochondrial dysfunction and cell death. Importantly, the inhibition of WWOX with Zfra1-31 reversed, totally or partially, the alterations promoted by high glucose. Altogether our observations demonstrate that under high glucose conditions WWOX activation contributes to mitochondrial anomalies and neuronal damage and death, which suggests that WWOX is a potential therapeutic target for early interventions. Our findings also support the efficacy of Zfra1-31 in treating hyperglycemia/diabetes-associated neurodegeneration.


Subject(s)
Amyloid beta-Peptides , Mitochondria , Neuroblastoma , WW Domain-Containing Oxidoreductase , Animals , Humans , Rats , Amyloid beta-Peptides/metabolism , Glucose/metabolism , Glucose/pharmacology , Homeostasis , Mitochondria/metabolism , Neuroblastoma/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , WW Domain-Containing Oxidoreductase/genetics , WW Domain-Containing Oxidoreductase/metabolism
3.
Cell Mol Life Sci ; 79(4): 213, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35344105

ABSTRACT

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are key events in the initiation and/or progression of several diseases, are correlated with alterations at ER-mitochondria contact sites, the so-called "Mitochondria-Associated Membranes" (MAMs). These intracellular structures are also implicated in NLRP3 inflammasome activation which is an important driver of sterile inflammation, however, the underlying molecular basis remains unclear. This work aimed to investigate the role of ER-mitochondria communication during ER stress-induced NLRP3 inflammasome activation in both peripheral and central innate immune systems, by using THP-1 human monocytes and BV2 microglia cells, respectively, as in vitro models. Markers of ER stress, mitochondrial dynamics and mass, as well as NLRP3 inflammasome activation were evaluated by Western Blot, IL-1ß secretion was measured by ELISA, and ER-mitochondria contacts were quantified by transmission electron microscopy. Mitochondrial Ca2+ uptake and polarization were analyzed with fluorescent probes, and measurement of aconitase and SOD2 activities monitored mitochondrial ROS accumulation. ER stress was demonstrated to activate the NLRP3 inflammasome in both peripheral and central immune cells. Studies in monocytes indicate that ER stress-induced NLRP3 inflammasome activation occurs by a Ca2+-dependent and ROS-independent mechanism, which is coupled with upregulation of MAMs-resident chaperones, closer ER-mitochondria contacts, as well as mitochondrial depolarization and impaired dynamics. Moreover, enhanced ER stress-induced NLRP3 inflammasome activation in the immune system was found associated with pathological conditions since it was observed in monocytes derived from bipolar disorder (BD) patients, supporting a pro-inflammatory status in BD. In conclusion, by demonstrating that ER-mitochondria communication plays a key role in the response of the innate immune cells to ER stress, this work contributes to elucidate the molecular mechanisms underlying NLRP3 inflammasome activation under stress conditions, and to disclose novel potential therapeutic targets for diseases associated with sterile inflammation.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Endoplasmic Reticulum Stress , Humans , Immune System , Mitochondria
4.
Cell Mol Neurobiol ; 42(1): 3-21, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34510330

ABSTRACT

Oxygen sensing and homeostasis is indispensable for the maintenance of brain structural and functional integrity. Under low-oxygen tension, the non-diseased brain has the ability to cope with hypoxia by triggering a homeostatic response governed by the highly conserved hypoxia-inducible family (HIF) of transcription factors. With the advent of advanced neuroimaging tools, it is now recognized that cerebral hypoperfusion, and consequently hypoxia, is a consistent feature along the Alzheimer's disease (AD) continuum. Of note, the reduction in cerebral blood flow and tissue oxygenation detected during the prodromal phases of AD, drastically aggravates as disease progresses. Within this scenario a fundamental question arises: How HIF-driven homeostatic brain response to hypoxia "behaves" during the AD continuum? In this sense, the present review is aimed to critically discuss and summarize the current knowledge regarding the involvement of hypoxia and HIF signaling in the onset and progression of AD pathology. Importantly, the promises and challenges of non-pharmacological and pharmacological strategies aimed to target hypoxia will be discussed as a new "hope" to prevent and/or postpone the neurodegenerative events that occur in the AD brain.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Brain/pathology , Cerebrovascular Circulation , Humans , Neuroimaging , Oxygen
5.
Int J Mol Sci ; 23(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36012191

ABSTRACT

Diabetes mellitus type 2 (T2DM) has been associated with alterations in the male reproductive tract, especially in the epididymis. Although it is known that T2DM alters epididymal physiology, disturbing mitochondrial function and favoring oxidative stress, the mechanisms remain unknown. Sirtuin 1 (SIRT1), peroxisome proliferators-activated receptor γ coactivator 1α (PGC-1α), and sirtuin 3 (SIRT3) are key regulators of mitochondrial function and inducers of antioxidant defenses. In this study, we hypothesized that the epididymal SIRT1/PGC-1α/SIRT3 axis mediates T2DM-induced epididymis dysfunction by controlling the oxidative profile. Using 7 Goto-Kakizaki (GK) rats (a non-obese model that spontaneously develops T2DM early in life), and 7 age-matched Wistar control rats, we evaluated the protein levels of SIRT1, PGC-1α, and SIRT3, as well as the expression of mitochondrial respiratory complexes. The activities of epididymal glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) were determined, as well as the epididymal antioxidant capacity. We also evaluated protein nitration, carbonylation, and lipid peroxidation in the epididymis. The T2DM rats presented with hyperglycemia and glucose intolerance. Epididymal levels of SIRT1, PGC-1α, and SIRT3 were decreased, as well as the expression of the mitochondrial complexes II, III, and V, in the T2DM rats. We found a significant decrease in the activities of SOD, CAT, and GPx, consistent with the lower antioxidant capacity and higher protein nitration and lipid peroxidation detected in the epididymis of the T2DM rats. In sum, T2DM disrupted the epididymal SIRT1/PGC-1α/SIRT3 pathway, which is associated with a compromised mitochondrial function. This resulted in a decline of the antioxidant defenses and an increased oxidative damage in that tissue, which may be responsible for the impaired male reproductive function observed in diabetic men.


Subject(s)
Diabetes Mellitus, Type 2 , Sirtuin 3 , Animals , Antioxidants/metabolism , Diabetes Mellitus, Type 2/metabolism , Epididymis/metabolism , Humans , Male , Oxidative Stress/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Rats, Wistar , Sirtuin 1/metabolism , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism
6.
Hum Mol Genet ; 28(13): 2174-2188, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30816415

ABSTRACT

The understanding of the natural history of Alzheimer's disease (AD) and temporal trajectories of in vivo molecular mechanisms requires longitudinal approaches. A behavioral and multimodal imaging study was performed at 4/8/12 and 16 months of age in a triple transgenic mouse model of AD (3xTg-AD). Behavioral assessment included the open field and novel object recognition tests. Molecular characterization evaluated hippocampal levels of amyloid ß (Aß) and hyperphosphorylated tau. Magnetic resonance imaging (MRI) included assessment of hippocampal structural integrity, blood-brain barrier (BBB) permeability and neurospectroscopy to determine levels of the endogenous neuroprotector taurine. Longitudinal brain amyloid accumulation was assessed using 11C Pittsburgh compound B positron emission tomography (PET), and neuroinflammation/microglia activation was investigated using 11C-PK1195. We found altered locomotor activity at months 4/8 and 16 months and recognition memory impairment at all time points. Substantial early reduction of hippocampal volume started at month 4 and progressed over 8/12 and 16 months. Hippocampal taurine levels were significantly decreased in the hippocampus at months 4/8 and 16. No differences were found for amyloid and neuroinflammation with PET, and BBB was disrupted only at month 16. In summary, 3xTg-AD mice showed exploratory and recognition memory impairments, early hippocampal structural loss, increased Aß and hyperphosphorylated tau and decreased levels of taurine. In sum, the 3xTg-AD animal model mimics pathological and neurobehavioral features of AD, with early-onset recognition memory loss and MRI-documented hippocampal damage. The early-onset profile suggests temporal windows and opportunities for therapeutic intervention, targeting endogenous neuroprotectors such as taurine.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Taurine/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Biomarkers , Blood-Brain Barrier/metabolism , Disease Models, Animal , Hippocampus/diagnostic imaging , Inflammation/genetics , Inflammation/metabolism , Longitudinal Studies , Magnetic Resonance Imaging , Male , Maze Learning/physiology , Memory Disorders , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Molecular Imaging , Multimodal Imaging , Presenilin-1/genetics , tau Proteins/genetics , tau Proteins/metabolism
7.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948265

ABSTRACT

Diabetes is a chronic metabolic disease that seriously compromises human well-being. Various studies highlight the importance of maintaining a sufficient glucose supply to the brain and subsequently safeguarding cerebral glucose metabolism. The goal of the present work is to clarify and disclose the metabolic alterations induced by recurrent hypoglycemia in the context of long-term hyperglycemia to further comprehend the effects beyond brain harm. To this end, chemically induced diabetic rats underwent a protocol of repeatedly insulin-induced hypoglycemic episodes. The activity of key enzymes of glycolysis, the pentose phosphate pathway and the Krebs cycle was measured by spectrophotometry in extracts or isolated mitochondria from brain cortical tissue. Western blot analysis was used to determine the protein content of glucose and monocarboxylate transporters, players in the insulin signaling pathway and mitochondrial biogenesis and dynamics. We observed that recurrent hypoglycemia up-regulates the activity of mitochondrial hexokinase and Krebs cycle enzymes (namely, pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and succinate dehydrogenase) and the protein levels of mitochondrial transcription factor A (TFAM). Both insults increased the nuclear factor erythroid 2-related factor 2 (NRF2) protein content and induced divergent effects in mitochondrial dynamics. Insulin-signaling downstream pathways were found to be down-regulated, and glycogen synthase kinase 3 beta (GSK3ß) was found to be activated through both decreased phosphorylation at Ser9 and increased phosphorylation at Y216. Interestingly, no changes in the levels of cAMP response element-binding protein (CREB), which plays a key role in neuronal plasticity and memory, were caused by hypoglycemia and/or hyperglycemia. These findings provide experimental evidence that recurrent hypoglycemia, in the context of chronic hyperglycemia, has the capacity to evoke coordinated adaptive responses in the brain cortex that will ultimately contribute to sustaining brain cell health.


Subject(s)
Cerebral Cortex/metabolism , Glucose/metabolism , Hypoglycemia/metabolism , Animals , Blood Glucose/metabolism , Brain/metabolism , Diabetes Mellitus, Experimental/metabolism , Energy Metabolism , Glycolysis/physiology , Hyperglycemia/metabolism , Hypoglycemia/physiopathology , Insulin/metabolism , Male , Mitochondria/metabolism , Neuronal Plasticity/drug effects , Rats , Rats, Wistar , Streptozocin/pharmacology
8.
Int J Mol Sci ; 22(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466445

ABSTRACT

The lack of effective disease-modifying therapeutics to tackle Alzheimer's disease (AD) is unsettling considering the actual prevalence of this devastating neurodegenerative disorder worldwide. Intermittent hypoxic conditioning (IHC) is a powerful non-pharmacological procedure known to enhance brain resilience. In this context, the aim of the present study was to investigate the potential long-term protective impact of IHC against AD-related phenotype, putting a special focus on cognition and mitochondrial bioenergetics and dynamics. For this purpose, six-month-old male triple transgenic AD mice (3×Tg-AD) were submitted to an IHC protocol for two weeks and the behavioral assessment was performed at 8.5 months of age, while the sacrifice of mice occurred at nine months of age and their brains were removed for the remaining analyses. Interestingly, IHC was able to prevent anxiety-like behavior and memory and learning deficits and significantly reduced brain cortical levels of amyloid-ß (Aß) in 3×Tg-AD mice. Concerning brain energy metabolism, IHC caused a significant increase in brain cortical levels of glucose and a robust improvement of the mitochondrial bioenergetic profile in 3×Tg-AD mice, as mirrored by the significant increase in mitochondrial membrane potential (ΔΨm) and respiratory control ratio (RCR). Notably, the improvement of mitochondrial bioenergetics seems to result from an adaptative coordination of the distinct but intertwined aspects of the mitochondrial quality control axis. Particularly, our results indicate that IHC favors mitochondrial fusion and promotes mitochondrial biogenesis and transport and mitophagy in the brain cortex of 3×Tg-AD mice. Lastly, IHC also induced a marked reduction in synaptosomal-associated protein 25 kDa (SNAP-25) levels and a significant increase in both glutamate and GABA levels in the brain cortex of 3×Tg-AD mice, suggesting a remodeling of the synaptic microenvironment. Overall, these results demonstrate the effectiveness of the IHC paradigm in forestalling the AD-related phenotype in the 3×Tg-AD mouse model, offering new insights to AD therapy and forcing a rethink concerning the potential value of non-pharmacological interventions in clinical practice.


Subject(s)
Alzheimer Disease/physiopathology , Cognition Disorders/physiopathology , Cognition/physiology , Energy Metabolism/physiology , Hypoxia/physiopathology , Mice, Transgenic/physiology , Mitochondria/physiology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Anxiety/metabolism , Anxiety/physiopathology , Brain/metabolism , Brain/physiopathology , Cognition Disorders/metabolism , Disease Models, Animal , Hypoxia/metabolism , Male , Mice , Mice, Transgenic/metabolism , Mitochondria/metabolism
9.
Int J Mol Sci ; 21(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143329

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia worldwide, being characterized by the deposition of senile plaques, neurofibrillary tangles (enriched in the amyloid beta (Aß) peptide and hyperphosphorylated tau (p-tau), respectively) and memory loss. Aging, type 2 diabetes (T2D) and female sex (especially after menopause) are risk factors for AD, but their crosslinking mechanisms remain unclear. Most clinical trials targeting AD neuropathology failed and it remains incurable. However, evidence suggests that effective anti-T2D drugs, such as the GLP-1 mimetic and neuroprotector liraglutide, can be also efficient against AD. Thus, we aimed to study the benefits of a peripheral liraglutide treatment in AD female mice. We used blood and brain cortical lysates from 10-month-old 3xTg-AD female mice, treated for 28 days with liraglutide (0.2 mg/kg, once/day) to evaluate parameters affected in AD (e.g., Aß and p-tau, motor and cognitive function, glucose metabolism, inflammation and oxidative/nitrosative stress). Despite the limited signs of cognitive changes in mature female mice, liraglutide only reduced their cortical Aß1-42 levels. Liraglutide partially attenuated brain estradiol and GLP-1 and activated PKA levels, oxidative/nitrosative stress and inflammation in these AD female mice. Our results support the earlier use of liraglutide as a potential preventive/therapeutic agent against the accumulation of the first neuropathological features of AD in females.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Hypoglycemic Agents/pharmacology , Inflammation/metabolism , Liraglutide/pharmacology , Peptide Fragments/metabolism , Animals , Behavior, Animal , Cyclic AMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Estradiol/metabolism , Female , Glucagon-Like Peptide 1/metabolism , Glycolysis , Maze Learning , Memory Disorders , Mice , Neurofibrillary Tangles/metabolism , Nitrosative Stress , Oxidative Stress , Phenotype , Plaque, Amyloid/metabolism
10.
Adv Exp Med Biol ; 1128: 161-183, 2019.
Article in English | MEDLINE | ID: mdl-31062330

ABSTRACT

Due to the exponential growth of aging population worldwide, neurodegenerative diseases became a major public health concern. Among them, Alzheimer's disease (AD) prevails as the most common in the elderly, rendering it a research priority. After several decades considering the brain as an insulin-insensitive organ, recent advances proved a central role for this hormone in learning and memory processes and showed that AD shares a high number of features with systemic conditions characterized by insulin resistance. Mitochondrial dysfunction has also been widely demonstrated to play a major role in AD development supporting the idea that this neurodegenerative disease is characterized by a pronounced metabolic dysregulation. This chapter is intended to discuss evidence demonstrating the key role of insulin signaling and mitochondrial anomalies in AD.


Subject(s)
Alzheimer Disease/pathology , Insulin Resistance , Insulin/physiology , Mitochondria/pathology , Signal Transduction , Humans
11.
Environ Geochem Health ; 40(5): 1767-1784, 2018 Oct.
Article in English | MEDLINE | ID: mdl-28281140

ABSTRACT

New lines of evidence suggest that less than 10% of neurodegenerative diseases have a strict genetic aetiology and other factors may be prevalent. Environmental exposures to potentially toxic elements appear to be a risk factor for Parkinson's, Alzheimer's and sclerosis diseases. This study proposes a multidisciplinary approach combining neurosciences, psychology and environmental sciences while integrating socio-economic, neuropsychological, environmental and health data. We present the preliminary results of a neuropsychological assessment carried out in elderly residents of the industrial city of Estarreja. A battery of cognitive tests and a personal questionnaire were administered to the participants. Multivariate analysis and multiple linear regression analysis were used to identify potential relationships between the cognitive status of the participants and environmental exposure to potentially toxic elements. The results suggest a relationship between urinary PTEs levels and the incidence of cognitive disorders. They also point towards water consumption habits and profession as relevant factors of exposure. Linear regression models show that aluminium (R 2 = 38%), cadmium (R 2 = 11%) and zinc (R 2 = 6%) are good predictors of the scores of the Mini-Mental State Examination cognitive test. Median contents (µg/l) in groundwater are above admissible levels for drinking water for aluminium (371), iron (860), manganese (250), and zinc (305). While the World Health Organization does not provide health-based reference values for aluminium, results obtained from this study suggest that it may have an important role in the cognitive status of the elderly. Urine proved to be a suitable biomarker of exposure both to elements with low and high excretion rates.


Subject(s)
Cognitive Dysfunction/chemically induced , Environmental Exposure , Environmental Pollutants/toxicity , Aged , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/psychology , Female , Groundwater/chemistry , Humans , Incidence , Male , Metals, Heavy/toxicity , Neuropsychological Tests , Portugal/epidemiology , Risk Factors , Water Pollutants, Chemical/toxicity
12.
Biochim Biophys Acta ; 1862(10): 1909-17, 2016 10.
Article in English | MEDLINE | ID: mdl-27460705

ABSTRACT

The vigorous axonal transport of mitochondria, which serves to distribute these organelles in a dynamic and non-uniform fashion, is crucial to fulfill neuronal energetic requirements allowing the maintenance of neurons structure and function. Particularly, axonal transport of mitochondria and their spatial distribution among the synapses are directly correlated with synaptic activity and integrity. Despite the basis of Alzheimer's disease (AD) remains enigmatic, axonal pathology and synaptic dysfunction occur prior the occurrence of amyloid-ß (Aß) deposition and tau aggregation, the two classical hallmarks of this devastating neurodegenerative disease. Importantly, the early stages of AD are marked by defects on axonal transport of mitochondria as denoted by the abnormal accumulation of mitochondria within large swellings along dystrophic and degenerating neuritis. Within this scenario, this review is devoted to identify the molecular "roadblocks" underlying the abnormal axonal transport of mitochondria and consequent synaptic "starvation" and neuronal degeneration in AD. Understanding the molecular nature of defective mitochondrial transport may provide a new avenue to counteract AD pathology.


Subject(s)
Alzheimer Disease/metabolism , Axons/metabolism , Mitochondria/metabolism , Neuritis/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Axons/pathology , Biological Transport, Active , Humans , Mitochondria/pathology , Neuritis/pathology
13.
Crit Rev Clin Lab Sci ; 54(3): 185-204, 2017 05.
Article in English | MEDLINE | ID: mdl-28393582

ABSTRACT

Cerebrospinal fluid (CSF) is an excellent source of biological information regarding the nervous system, once it is in close contact and accurately reflects alterations in this system. Several studies have analyzed differential protein profiles of CSF samples between healthy and diseased human subjects. However, the pathophysiological mechanisms and how CSF proteins relate to diseases are still poorly known. By applying bioinformatics tools, we attempted to provide new insights on the biological and functional meaning of proteomics data envisioning the identification of putative disease biomarkers. Bioinformatics analysis of data retrieved from 99 mass spectrometry (MS)-based studies on CSF profiling highlighted 1985 differentially expressed proteins across 49 diseases. A large percentage of the modulated proteins originate from exosome vesicles, and the majority are involved in either neuronal cell growth, development, maturation, migration, or neurotransmitter-mediated cellular communication. Nevertheless, some diseases present a unique CSF proteome profile, which were critically analyzed in the present study. For instance, 48 proteins were found exclusively upregulated in the CSF of patients with Alzheimer's disease and are mainly involved in steroid esterification and protein activation cascade processes. A higher number of exclusively upregulated proteins were found in the CSF of patients with multiple sclerosis (76 proteins) and with bacterial meningitis (70 proteins). Whereas in multiple sclerosis, these proteins are mostly involved in the regulation of RNA metabolism and apoptosis, in bacterial meningitis the exclusively upregulated proteins participate in inflammation and antibacterial humoral response, reflecting disease pathogenesis. The exploration of the contribution of exclusively upregulated proteins to disease pathogenesis will certainly help to envision potential biomarkers in the CSF for the clinical management of nervous system diseases.


Subject(s)
Cerebrospinal Fluid Proteins , Protein Interaction Maps/physiology , Proteome , Proteomics/methods , Alzheimer Disease/metabolism , Biomarkers/cerebrospinal fluid , Biomarkers/chemistry , Biomarkers/metabolism , Cerebrospinal Fluid Proteins/analysis , Cerebrospinal Fluid Proteins/chemistry , Cerebrospinal Fluid Proteins/classification , Cerebrospinal Fluid Proteins/metabolism , Humans , Mass Spectrometry , Meningitis, Bacterial/metabolism , Multiple Sclerosis/metabolism , Proteome/analysis , Proteome/chemistry , Proteome/metabolism
14.
Handb Exp Pharmacol ; 240: 281-308, 2017.
Article in English | MEDLINE | ID: mdl-28251365

ABSTRACT

Alzheimer's disease (AD) is a difficult puzzle to solve, in part because the etiology of this devastating neurodegenerative disorder remains murky. However, diabetes has been pinpointed as a major risk factor for the sporadic forms of AD. Several overlapping neurodegenerative mechanisms have been identified between AD and diabetes, including mitochondrial malfunction. This is not surprising taking into account that neurons are cells with a complex morphology, long lifespan, and high energetic requirements which make them particularly reliant on a properly organized and dynamic mitochondrial network to sustain neuronal function and integrity. In this sense, this chapter provides an overview on the role of mitochondrial bioenergetics and dynamics to the neurodegenerative events that occur in AD and diabetes, and how these organelles may represent a mechanistic link between these two pathologies. From a therapeutic perspective, it will be discussed how mitochondria can be targeted in order to efficaciously counteract neurodegeneration associated with AD and diabetes.


Subject(s)
Alzheimer Disease/etiology , Diabetic Neuropathies/etiology , Mitochondria/physiology , Neurodegenerative Diseases/etiology , Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Animals , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/physiopathology , Energy Metabolism , Humans , Mitochondria/drug effects , Mitochondrial Dynamics , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology
15.
Biochim Biophys Acta ; 1852(8): 1665-75, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25960150

ABSTRACT

We aimed to investigate mitochondrial function, biogenesis and autophagy in the brain of type 2 diabetes (T2D) and Alzheimer's disease (AD) mice. Isolated brain mitochondria and homogenates from cerebral cortex and hippocampus of wild-type (WT), triple transgenic AD (3xTg-AD) and T2D mice were used to evaluate mitochondrial functional parameters and protein levels of mitochondrial biogenesis, autophagy and synaptic integrity markers, respectively. A significant decrease in mitochondrial respiration, membrane potential and energy levels was observed in T2D and 3xTg-AD mice. Also, a significant decrease in the levels of autophagy-related protein 7 (ATG7) and glycosylated lysosomal membrane protein 1 (LAMP1) was observed in cerebral cortex and hippocampus of T2D and 3xTg-AD mice. Moreover, both brain regions of 3xTg-AD mice present lower levels of nuclear respiratory factor (NRF) 1 while the levels of NRF2 are lower in both brain regions of T2D and 3xTg-AD mice. A decrease in mitochondrial encoded, nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) was also observed in T2D and 3xTg-AD mice although only statistically significant in T2D cortex. Furthermore, a decrease in the levels of postsynaptic density protein 95 (PSD95) in the cerebral cortex of 3xTg-AD mice and in hippocampus of T2D and 3xTg-AD mice and a decrease in the levels of synaptosomal-associated protein 25 (SNAP 25) in the hippocampus of T2D and 3xTg-AD mice were observed suggesting synaptic integrity loss. These results support the idea that alterations in mitochondrial function, biogenesis and autophagy cause synaptic damage in AD and T2D.


Subject(s)
Alzheimer Disease , Autophagy/physiology , Biomarkers/metabolism , Brain , Diabetes Mellitus, Type 2 , Mitochondria/pathology , Synapses/metabolism , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Male , Mice , Mice, Transgenic , Mitochondria/metabolism
16.
J Neural Transm (Vienna) ; 123(2): 107-11, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25608860

ABSTRACT

Multiple lines of evidence suggest that vascular alterations contribute to Alzheimer's disease (AD) pathogenesis. It is also well established that mitochondrial abnormalities occur early in course of AD. Here, we give an overview of the vascular and mitochondrial abnormalities occurring in AD, including mitochondrial alterations in vascular endothelial cells within the brain, which is emerging as a common feature that bridges cerebral vasculature and mitochondrial metabolism.


Subject(s)
Alzheimer Disease/physiopathology , Brain/physiopathology , Cerebrovascular Circulation/physiology , Mitochondria/physiology , Alzheimer Disease/pathology , Animals , Brain/pathology , Humans , Mitochondria/pathology
17.
Biochim Biophys Acta ; 1837(3): 335-44, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24361842

ABSTRACT

Pre-diabetes, a risk factor for type 2 diabetes development, leads to metabolic changes at testicular level. Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) and Sirtuin 3 (Sirt3) are pivotal in mitochondrial function. We hypothesized that pre-diabetes disrupts testicular PGC-1α/Sirt3 axis, compromising testicular mitochondrial function. Using a high-energy-diet induced pre-diabetic rat model, we evaluated testicular levels of PGC-1α and its downstream targets, nuclear respiratory factors 1 (NRF-1) and 2 (NRF-2), mitochondrial transcription factor A (TFAM) and Sirt3. We also assessed mitochondrial DNA (mtDNA) content, mitochondrial function, energy levels and oxidative stress parameters. Protein levels were quantified by Western Blot, mtDNA content was determined by qPCR. Mitochondrial complex activity and oxidative stress parameters were spectrophotometrically evaluated. Adenine nucleotide levels, adenosine and its metabolites (inosine and hypoxanthine) were determined by reverse-phase HPLC. Pre-diabetic rats showed increased blood glucose levels and impaired glucose tolerance. Both testicular PGC-1α and Sirt3 levels were decreased. NRF-1, NRF-2 and TFAM were not altered. Testicular mtDNA content was decreased. Mitochondrial complex I activity was increased, whereas mitochondrial complex III activity was decreased. Adenylate energy charge was decreased in pre-diabetic rats, as were ATP and ADP levels. Conversely, AMP levels were increased, evidencing a decreased ATP/AMP ratio. Concerning to oxidative stress pre-diabetes decreased testicular antioxidant capacity and increased lipid and protein oxidation. In sum, pre-diabetes compromises testicular mitochondrial function by repressing PGC-1α/Sirt3 axis and mtDNA copy number, declining respiratory capacity and increasing oxidative stress. This study gives new insights into overall testicular bioenergetics at this prodromal stage of disease.


Subject(s)
Energy Metabolism/physiology , Oxidative Stress/physiology , Prediabetic State/physiopathology , Sirtuin 3/metabolism , Testis/metabolism , Transcription Factors/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Blood Glucose/metabolism , Blotting, Western , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Electron Transport Complex I/metabolism , Electron Transport Complex III/metabolism , GA-Binding Protein Transcription Factor/metabolism , Insulin/blood , Male , Mitochondria/genetics , Mitochondria/metabolism , Nuclear Respiratory Factor 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Polymerase Chain Reaction , Prediabetic State/blood , Rats , Rats, Wistar
18.
J Bioenerg Biomembr ; 47(1-2): 119-31, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25217852

ABSTRACT

The integrity of mitochondrial function is essential to cell life. It follows that disturbances of mitochondrial function will lead to disruption of cell function, expressed as disease or even death. Considering that neuronal uncoupling proteins (UCPs) decrease reactive oxygen species (ROS) production at the expense of energy production, it is important to understand the underlying mechanisms by which UCPs control the balance between the production of adenosine triphosphate (ATP) and ROS in the context of normal physiological activity and in pathological conditions. Here we review the current understanding of neuronal UCPs-mediated respiratory uncoupling process by performing a survey in their physiology and regulation. The latest findings regarding neuronal UCPs physiological roles and their involvement and interest as potential targets for therapeutic intervention in brain diseases will also be exploited.


Subject(s)
Brain Diseases/metabolism , Brain/metabolism , Ion Channels/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neurons/metabolism , Adenosine Triphosphate/metabolism , Animals , Brain/pathology , Brain Diseases/drug therapy , Brain Diseases/pathology , Energy Metabolism , Humans , Mitochondria/pathology , Neurons/pathology , Reactive Oxygen Species/metabolism , Uncoupling Protein 1
19.
Cell Tissue Res ; 362(2): 431-40, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26051285

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease that has grown to pandemic proportions. Recent reports have highlighted the effect of DM on male reproductive function. Here, we hypothesize that testicular metabolism is altered in type 1 diabetic (T1D) men seeking fertility treatment. We propose to determine some metabolic fingerprints in testicular biopsies of diabetic patients. For that, testicular tissue from five normal and five type 1 diabetic men was analyzed by high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. mRNA and protein expression of glucose transporters and glycolysis-related enzymes were also evaluated. Our results show that testes from diabetic men presented decreased levels of lactate, alanine, citrate and creatine. The mRNA levels of glucose transporter 1 (GLUT1) and phosphofructokinase 1 (PFK1) were decreased in testes from diabetic men but only GLUT3 presented decreased mRNA and protein levels. Lactate dehydrogenase (LDH) and glutamate pyruvate transaminase (GPT) protein levels were also found to be decreased in testes from diabetic men. Overall, our results show that T1D alters glycolysis-related transporters and enzymes, compromising lactate content in the testes. Moreover, testicular creatine content was severely depressed in T1D men. Since lactate and creatine are essential for germ cells development and support, the data discussed here open new insights into the molecular mechanism by which DM promotes subfertility/infertility in human males.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Glycolysis/physiology , Testis/metabolism , Testis/pathology , Biopsy , Diabetes Mellitus, Type 1/pathology , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 3/metabolism , Humans , L-Lactate Dehydrogenase/metabolism , Male , Reproduction/physiology
20.
Br J Nutr ; 113(5): 832-42, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25716141

ABSTRACT

Diabetes mellitus (DM) is a major public health problem and its incidence is rising dramatically. The brain, particularly the cerebral cortex, is very susceptible to glucose fluctuations and hyperglycaemia-induced oxidative stress. Tea (Camellia sinensis (L.)) is widely consumed; however, the antidiabetic properties of white tea remain largely unexplored. In the present study, we investigated the effects of daily consumption of white tea on the cerebral cortex of prediabetic rats. The cerebral cortex metabolic profile was evaluated, and the expression levels of GLUT, phosphofructokinase-1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were assessed. LDH activity was also determined. The cerebral cortex oxidative profile was determined by evaluating its antioxidant power, lipid peroxidation and protein oxidation levels. Catalase, glutathione, glutamate, N-acetylaspartate, aspartate, choline, γ-aminobutyric acid, taurine and valine contents were determined. Daily consumption of white tea ameliorated glucose tolerance and insulin sensitivity. Moreover, white tea altered the cortex glycolytic profile, modulating GLUT expression and lactate and alanine contents. Finally, white tea consumption restored protein oxidation and lipid peroxidation levels and catalase expression, and improved antioxidant capacity. In conclusion, daily consumption of white tea improved the cerebral cortex metabolic and oxidative profile in prediabetic rats, suggesting it as a good, safe and inexpensive strategy to prevent DM-related effects in the cerebral cortex.


Subject(s)
Camellia sinensis/chemistry , Cerebral Cortex/metabolism , Neurons/metabolism , Plant Leaves/chemistry , Plant Shoots/chemistry , Prediabetic State/diet therapy , Tea , Animals , Biomarkers/metabolism , Camellia sinensis/growth & development , Cerebral Cortex/enzymology , Gene Expression Regulation , Glutathione/metabolism , Glycolysis , Insulin Resistance , Lipid Peroxidation , Male , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/enzymology , Oxidation-Reduction , Oxidative Stress , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Leaves/growth & development , Plant Shoots/growth & development , Prediabetic State/enzymology , Prediabetic State/metabolism , Protein Carbonylation , Random Allocation , Rats, Wistar , Tea/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL