Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Mol Sci ; 21(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599901

ABSTRACT

Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells. We investigated if and how snoRNAs are linked to resistance. After RT-PCR validation of snoRNAs up-regulated in osteosarcoma cells with different degrees of resistance to Dox, we overexpressed them in Dox-sensitive cells. We then evaluated Dox cytotoxicity and changes in genes relevant for osteosarcoma pathogenesis by PCR arrays. SNORD3A, SNORA13 and SNORA28 reduced Dox-cytotoxicity when over-expressed in Dox-sensitive cells. In these cells, GADD45A and MYC were up-regulated, TOP2A was down-regulated. The same profile was detected in cells with acquired resistance to Dox. GADD45A/MYC-silencing and TOP2A-over-expression counteracted the resistance to Dox induced by snoRNAs. We reported for the first time that snoRNAs induce resistance to Dox in human osteosarcoma, by modulating the expression of genes involved in DNA damaging sensing, DNA repair, ribosome biogenesis, and proliferation. Targeting snoRNAs or down-stream genes may open new treatment perspectives in chemoresistant osteosarcomas.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Bone Neoplasms/drug therapy , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Osteosarcoma/drug therapy , RNA, Small Nucleolar/genetics , Apoptosis , Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Proliferation , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Tumor Cells, Cultured
2.
J Exp Clin Cancer Res ; 42(1): 120, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37170152

ABSTRACT

BACKGROUND: MET-driven acquired resistance is emerging with unanticipated frequency in patients relapsing upon molecular therapy treatments. However, the determination of MET amplification remains challenging using both standard and next-generation sequencing-based methodologies. Liquid biopsy is an effective, non-invasive approach to define cancer genomic profiles, track tumor evolution over time, monitor treatment response and detect molecular resistance in advance. Circular RNAs (circRNAs), a family of RNA molecules that originate from a process of back-splicing, are attracting growing interest as potential novel biomarkers for their stability in body fluids. METHODS: We identified a circRNA encoded by the MET gene (circMET) and exploited blood-derived cell-free RNA (cfRNA) and matched tumor tissues to identify, stratify and monitor advanced cancer patients molecularly characterized by high MET activity, generally associated with genomic amplification. RESULTS: Using publicly available bioinformatic tools, we discovered that the MET locus transcribes several circRNA molecules, but only one candidate, circMET, was particularly abundant. Deeper molecular analysis revealed that circMET levels positively correlated with MET expression and activity, especially in MET-amplified cells. We developed a circMET-detection strategy and, in parallel, we performed standard FISH and IHC analyses in the same specimens to assess whether circMET quantification could identify patients displaying high MET activity. Longitudinal monitoring of circMET levels in the plasma of selected patients revealed the early emergence of MET amplification as a mechanism of acquired resistance to molecular therapies. CONCLUSIONS: We found that measurement of circMET levels allows identification and tracking of patients characterized by high MET activity. Circulating circMET (ccMET) detection and analysis could be a simple, cost-effective, non-invasive approach to better implement patient stratification based on MET expression, as well as to dynamically monitor over time both therapy response and clonal evolution during treatment.


Subject(s)
Neoplasms , RNA, Circular , Humans , Biomarkers , Computational Biology , Neoplasms/genetics , RNA/genetics , RNA/metabolism , RNA, Circular/genetics
3.
Cancers (Basel) ; 13(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066159

ABSTRACT

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer generally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived drug that recently received accelerated approval by the FDA for the treatment of patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. METHODS: A panel of primary MPM cultures, resembling the three major MPM histological subtypes (epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. RESULTS: Stabilized MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death. Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM transforming abilities in vitro. CONCLUSION: Overall, our data provide evidence that lurbinectedin exerts a potent antitumoral activity on primary MPM cells, independently from both the histological subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.

4.
Transl Lung Cancer Res ; 9(6): 2629-2644, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33489823

ABSTRACT

Lung cancer currently stands out as both the most common and the most lethal type of cancer, the latter feature being partly explained by the fact that the majority of lung cancer patients already display advanced disease at the time of diagnosis. In recent years, the development of specific tyrosine kinase inhibitors (TKI) for the therapeutic benefit of patients harboring certain molecular aberrations and the introduction of prospective molecular profiling in the clinical practice have revolutionized the treatment of advanced non-small cell lung cancer (NSCLC). However, the identification of the best strategies to enhance treatment effectiveness and to avoid the critical phenomenon of drug tolerance and acquired resistance in patients with lung cancer still remains an unmet medical need. Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are two complementary approaches to define tumor heterogeneity and clonal evolution in a non-invasive manner and to perform functional studies on metastatic cells. Finally, the recent discovery that the tumor microenvironment architecture can be faithfully recapitulated in vitro represents a novel pre-clinical frontier with the potential to optimize more effective immunology-based precision therapies that could rapidly move forward to the clinic.

5.
Oncoimmunology ; 7(3): e1398874, 2018.
Article in English | MEDLINE | ID: mdl-29399399

ABSTRACT

Systemic treatment of malignant pleural mesothelioma (MPM) is moderately active for the intrinsic pharmacological resistance of MPM cell and its ability to induce an immune suppressive environment. Here we showed that the expression of bromodomain (BRD) proteins BRD2, BRD4 and BRD9 was significantly higher in human primary MPM cells compared to normal mesothelial cells (HMC). Nanomolar concentrations of bromodomain inhibitors (BBIs) JQ1 or OTX015 impaired patient-derived MPM cell proliferation and induced cell-cycle arrest without affecting apoptosis. Importantly, BBIs primed MPM cells for immunogenic cell death, by increasing extracellular release of ATP and HMGB1, and by promoting membrane exposure of calreticulin and ERp57. Accordingly, BBIs activated dendritic cell (DC)-mediated phagocytosis and expansion of CD8+ T-lymphocyte clones endorsed with antitumor cytotoxic activity. BBIs reduced the expression of the immune checkpoint ligand PD-L1 in MPM cells; while both CD8+ and CD4+ T-lymphocytes co-cultured with JQ1-treated MPM cells decreased PD-1 expression, suggesting a disruption of the immune-suppressive PD-L1/PD-1 axis. Additionally, BBIs reduced the expansion of myeloid-derived suppressor cells (MDSC) induced by MPM cells. Finally, a preclinical model of MPM confirmed that the anti-tumor efficacy of JQ1 was largely due to its ability to restore an immune-active environment, by increasing intra-tumor DC and CD8+ T-lymphocytes, and decreasing MDSC. Thereby, we propose that, among novel drugs, BBIs should be investigated for MPM treatment for their combined activity on both tumor cells and surrounding immune-environment.

6.
Oncotarget ; 8(22): 35508-35522, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28418900

ABSTRACT

Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disorder with either indolent or aggressive clinical course. Current treatment regiments have significantly improved the overall outcomes even if higher risk subgroups - those harboring TP53 mutations or deletions of the short arm of chromosome 17 (del17p) - remain highly challenging. In the present work, we identified USP7, a known de-ubiquitinase with multiple roles in cellular homeostasis, as a potential therapeutic target in CLL. We demonstrated that in primary CLL samples and in CLL cell lines USP7 is: i) over-expressed through a mechanism involving miR-338-3p and miR-181b deregulation; ii) functionally activated by Casein Kinase 2 (CK2), an upstream interactor known to be deregulated in CLL; iii) effectively targeted by the USP7 inhibitor P5091. Treatment of primary CLL samples and cell lines with P5091 induces cell growth arrest and apoptosis, through the restoration of PTEN nuclear pool, both in TP53-wild type and -null environment. Importantly, PTEN acts as the main tumor suppressive mediator along the USP7-PTEN axis in a p53 dispensable manner. In conclusion, we propose USP7 as a new druggable target in CLL.


Subject(s)
Gene Expression Regulation, Leukemic/drug effects , Gene Regulatory Networks/drug effects , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , PTEN Phosphohydrolase/genetics , Ubiquitin-Specific Peptidase 7/genetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Deletion , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Models, Biological , Mutation , PTEN Phosphohydrolase/metabolism , Protein Transport , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin-Specific Peptidase 7/metabolism , Up-Regulation
7.
Oncol Lett ; 12(5): 3123-3126, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27899971

ABSTRACT

Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is driven by the p190 breakpoint cluster region (BCR)-ABL isoform. Although effectively targeted by BCR-ABL tyrosine kinase inhibitors (TKIs), ALL is associated with a less effective response to TKIs compared with chronic myeloid leukemia. Therefore, the identification of additional genes required for ALL maintenance may provide possible therapeutic targets to aid the eradication of this cancer. The present study demonstrated that p190 BCR-ABL is able to interact with the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP), which in turn affects p53 protein stability. Notably, the inhibition of HAUSP with small molecule inhibitors promoted the upregulation of p53 protein levels. These results suggest that HAUSP inhibitors may harbor clinically relevant implications in the treatment of Ph+ ALL.

8.
Cancer Res ; 76(20): 6095-6106, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27569217

ABSTRACT

Current therapeutic options for the pediatric cancer rhabdomyosarcoma have not improved significantly, especially for metastatic rhabdomyosarcoma. In the current work, we performed a deep miRNA profiling of the three major human rhabdomyosarcoma subtypes, along with cell lines and normal muscle, to identify novel molecular circuits with therapeutic potential. The signature we determined could discriminate rhabdomyosarcoma from muscle, revealing a subset of muscle-enriched miRNA (myomiR), including miR-22, which was strongly underexpressed in tumors. miR-22 was physiologically induced during normal myogenic differentiation and was transcriptionally regulated by MyoD, confirming its identity as a myomiR. Once introduced into rhabdomyosarcoma cells, miR-22 decreased cell proliferation, anchorage-independent growth, invasiveness, and promoted apoptosis. Moreover, restoring miR-22 expression blocked tumor growth and prevented tumor dissemination in vivo Gene expression profiling analysis of miR-22-expressing cells suggested TACC1 and RAB5B as possible direct miR-22 targets. Accordingly, loss- and gain-of-function experiments defined the biological relevance of these genes in rhabdomyosarcoma pathogenesis. Finally, we demonstrated the ability of miR-22 to intercept and overcome the intrinsic resistance to MEK inhibition based on ERBB3 upregulation. Overall, our results identified a novel miR-22 regulatory network with critical therapeutic implications in rhabdomyosarcoma. Cancer Res; 76(20); 6095-106. ©2016 AACR.


Subject(s)
Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , MicroRNAs/physiology , Rhabdomyosarcoma/therapy , Animals , Cell Differentiation , Cell Line, Tumor , Female , Fetal Proteins/genetics , Fetal Proteins/physiology , Gene Expression Regulation, Neoplastic , Humans , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/physiology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , MyoD Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Promoter Regions, Genetic , Receptor, ErbB-3/genetics , Receptor, ErbB-3/physiology , Rhabdomyosarcoma/etiology , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/physiology
9.
Elife ; 52016 Mar 17.
Article in English | MEDLINE | ID: mdl-26987019

ABSTRACT

Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity.


Subject(s)
Cell Proliferation , Hepatocyte Growth Factor/metabolism , PAX7 Transcription Factor/metabolism , Sarcoma/pathology , Animals , Humans , Mice, Transgenic , PAX7 Transcription Factor/genetics , Sarcoma/genetics
10.
Cell Cycle ; 14(9): 1389-402, 2015.
Article in English | MEDLINE | ID: mdl-25644430

ABSTRACT

Rhadomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. RMS cells resemble fetal myoblasts but are unable to complete myogenic differentiation. In previous work we showed that miR-206, which is low in RMS, when induced in RMS cells promotes the resumption of differentiation by modulating more than 700 genes. To better define the pathways involved in the conversion of RMS cells into their differentiated counterpart, we focused on 2 miR-206 effectors emerged from the microarray analysis, SMYD1 and G6PD. SMYD1, one of the most highly upregulated genes, is a H3K4 histone methyltransferase. Here we show that SMYD1 silencing does not interfere with the proliferative block or with the loss anchorage independence imposed by miR-206, but severely impairs differentiation of ERMS, ARMS, and myogenic cells. Thus SMYD1 is essential for the activation of muscle genes. Conversely, among the downregulated genes, we found G6PD, the enzyme catalyzing the rate-limiting step of the pentose phosphate shunt. In this work, we confirmed that G6PD is a direct target of miR-206. Moreover, we showed that G6PD silencing in ERMS cells impairs proliferation and soft agar growth. However, G6PD overexpression does not interfere with the pro-differentiating effect of miR-206, suggesting that G6PD downmodulation contributes to - but is not an absolute requirement for - the tumor suppressive potential of miR-206. Targeting cancer metabolism may enhance differentiation. However, therapeutic inhibition of G6PD is encumbered by side effects. As an alternative, we used DCA in combination with miR-206 to increase the flux of pyruvate into the mitochondrion by reactivating PDH. DCA enhanced the inhibition of RMS cell growth induced by miR-206, and sustained it upon miR-206 de-induction. Altogether these results link miR-206 to epigenetic and metabolic reprogramming, and suggest that it may be worth combining differentiation-inducing with metabolism-directed approaches.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Glucosephosphate Dehydrogenase/metabolism , MicroRNAs/metabolism , Muscle Development , Muscle Proteins/metabolism , Rhabdomyosarcoma, Alveolar/enzymology , Rhabdomyosarcoma, Embryonal/enzymology , Transcription Factors/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , DNA-Binding Proteins/genetics , Dichloroacetic Acid/pharmacology , Energy Metabolism , Gene Expression Regulation, Neoplastic , Glucosephosphate Dehydrogenase/genetics , Humans , MicroRNAs/genetics , Muscle Development/drug effects , Muscle Fibers, Skeletal/enzymology , Muscle Fibers, Skeletal/pathology , Muscle Proteins/genetics , Myoblasts/enzymology , Myoblasts/pathology , Phenotype , RNA Interference , Rhabdomyosarcoma, Alveolar/drug therapy , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Alveolar/pathology , Rhabdomyosarcoma, Embryonal/drug therapy , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/pathology , Signal Transduction , Time Factors , Transcription Factors/genetics , Transcription, Genetic , Transfection
11.
12.
PLoS One ; 9(12): e115816, 2014.
Article in English | MEDLINE | ID: mdl-25546457

ABSTRACT

We recently described the mitochondrial localization and import of the vitamin D receptor (VDR) in actively proliferating HaCaT cells for the first time, but its role in the organelle remains unknown. Many metabolic intermediates that support cell growth are provided by the mitochondria; consequently, the identification of proteins that regulate mitochondrial metabolic pathways is of great interest, and we sought to understand whether VDR may modulate these pathways. We genetically silenced VDR in HaCaT cells and studied the effects on cell growth, mitochondrial metabolism and biosynthetic pathways. VDR knockdown resulted in robust growth inhibition, with accumulation in the G0G1 phase of the cell cycle and decreased accumulation in the M phase. The effects of VDR silencing on proliferation were confirmed in several human cancer cell lines. Decreased VDR expression was consistently observed in two different models of cell differentiation. The impairment of silenced HaCaT cell growth was accompanied by sharp increases in the mitochondrial membrane potential, which sensitized the cells to oxidative stress. We found that transcription of the subunits II and IV of cytochrome c oxidase was significantly increased upon VDR silencing. Accordingly, treatment of HaCaT cells with vitamin D downregulated both subunits, suggesting that VDR may inhibit the respiratory chain and redirect TCA intermediates toward biosynthesis, thus contributing to the metabolic switch that is typical of cancer cells. In order to explore this hypothesis, we examined various acetyl-CoA-dependent biosynthetic pathways, such as the mevalonate pathway (measured as cholesterol biosynthesis and prenylation of small GTPases), and histone acetylation levels; all of these pathways were inhibited by VDR silencing. These data provide evidence of the role of VDR as a gatekeeper of mitochondrial respiratory chain activity and a facilitator of the diversion of acetyl-CoA from the energy-producing TCA cycle toward biosynthetic pathways that are essential for cellular proliferation.


Subject(s)
Cell Proliferation , Cellular Reprogramming , Electron Transport , Neoplasms/metabolism , Receptors, Calcitriol/metabolism , Cell Line, Tumor , G1 Phase Cell Cycle Checkpoints , Humans , M Phase Cell Cycle Checkpoints , Metabolic Networks and Pathways , Mitochondria/metabolism , Receptors, Calcitriol/genetics
SELECTION OF CITATIONS
SEARCH DETAIL