Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Bioorg Med Chem ; 59: 116657, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35219181

ABSTRACT

Fibroblast growth factor receptor 3 (FGFR3) is an attractive therapeutic target for the treatment of bladder cancer patients harboring genetic alterations in FGFR3. We identified pyrimidine derivative ASP5878 (27) with improved metabolic stability and suppressed human ether-Ć”-go-go related gene (hERG) channel inhibitory activity by the optimization of lead compound 1. Based on prediction of the metabolites of 1, an ether linker was introduced in place of the ethylene linker to improve metabolic stability. Moreover, conversion of the phenyl moiety into the pyrazole ring resulted in the suppression of hERG channel inhibitory activity, possibly due to the weaker π-π stacking interaction with Phe656 in the hERG channel by a reduction in π-electrical density of the aromatic ring. ASP5878 showed potent in vitro FGFR3 enzyme and cell growth inhibitory activity, and in vivo FGFR3 autophosphorylation inhibitory activity. Moreover, ASP5878 did not affect the hERG current up to 10Ā ĀµM by in vitro patch-clamp assay, and a single oral dose of ASP5878 at 1, 10, and 100Ā mg/kg did not induce serious adverse effects on the central nervous, cardiovascular, and respiratory systems in dogs. Furthermore, ASP5878 exhibited lower total clearance than hepatic blood flow and high oral bioavailability in rats and dogs, and moderate brain penetration in rats.


Subject(s)
Pyrazoles , Pyrimidines , Animals , Dogs , ERG1 Potassium Channel/metabolism , Ether-A-Go-Go Potassium Channels , Ethers , Humans , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship
2.
Bioorg Med Chem ; 33: 116019, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33486159

ABSTRACT

Fibroblast growth factor receptor 3 (FGFR3) is an attractive therapeutic target for the treatment of patients with bladder cancer harboring genetic alterations in FGFR3. We identified pyrimidine derivative 20b, which induced tumor regression following oral administration to a bladder cancer xenograft mouse model. Compound 20b was discovered by optimizing lead compound 1, which we reported previously. Specifically, reducing the molecular size of the substituent at the 4-position and replacing the linker of the 5-position in the pyrimidine scaffold resulted in an increase in systemic exposure. Furthermore, introduction of two fluorine atoms into the 3,5-dimethoxyphenyl ring enhanced FGFR3 inhibitory activity. Molecular dynamics (MD) simulation of 20b suggested that the fluorine atom interacts with the main chain NH moiety of Asp635 via a hydrogen bond.


Subject(s)
Antineoplastic Agents/pharmacology , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Urinary Bladder Neoplasms/drug therapy , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Dynamics Simulation , Molecular Structure , NIH 3T3 Cells , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Solubility , Structure-Activity Relationship , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
3.
Bioorg Med Chem ; 28(10): 115453, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32278710

ABSTRACT

Fibroblast growth factor receptor 3 (FGFR3) is an attractive therapeutic target for the treatment of bladder cancer. We identified 1,3,5-triazine derivative 18b and pyrimidine derivative 40a as novel structures with potent and highly selective FGFR3 inhibitory activity over vascular endothelial growth factor receptor 2 (VEGFR2) using a structure-based drug design (SBDD) approach. X-ray crystal structure analysis suggests that interactions between 18b and amino acid residues located in the solvent region (Lys476 and Met488), and between 40a and Met529 located in the back pocket of FGFR3 may underlie the potent FGFR3 inhibitory activity and high kinase selectivity over VEGFR2.


Subject(s)
Drug Design , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Triazines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Cell Line , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Structure-Activity Relationship , Triazines/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Bioorg Med Chem ; 17(9): 3283-94, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19362005

ABSTRACT

In the search for potent and selective human beta3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of phenoxypropanolamine derivatives containing acetanilides were prepared and their biological activities were evaluated at the human beta3-, beta2-, and beta1-ARs. Several of the analogues (21a, 21b, and 27a) exhibited potent agonistic activity at the beta3-AR. Among the compounds described herein, the N-methyl-1-benzylimidazol-2-ylacetanilide derivative (21b) was found to be the most potent and selective beta3-AR agonist, with an EC(50) value of 0.28 microM and no agonistic activity for either the beta1- or beta2-AR. In addition, 21b showed significant hypoglycemic activity in a rodent diabetic model.


Subject(s)
Acetanilides/chemical synthesis , Acetanilides/pharmacology , Adrenergic beta-3 Receptor Agonists , Phenoxypropanolamines/chemical synthesis , Phenoxypropanolamines/pharmacology , Acetanilides/chemistry , Adrenergic beta-1 Receptor Agonists , Adrenergic beta-2 Receptor Agonists , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Dose-Response Relationship, Drug , Drug Design , Humans , Male , Mice , Models, Molecular , Molecular Conformation , Phenoxypropanolamines/chemistry , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem ; 16(13): 6509-21, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18534856

ABSTRACT

Signal transducers and activators of transcription 6 (STAT6) is a key regulator of the type 2 helper T (Th2) cell immune response and a potential therapeutic target for allergic diseases such as asthma and atopic diseases. To search for potent and orally bioavailable STAT6 inhibitors, we synthesized a series of 4-benzylaminopyrimidine-5-carboxamide derivatives and evaluated their STAT6 inhibitory activities. Among these compounds, 2-[(4-morpholin-4-ylphenyl)amino]-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide (25y, YM-341619, AS1617612) showed potent STAT6 inhibition with an IC(50) of 0.70nM, and also inhibited Th2 differentiation in mouse spleen T cells induced by interleukin (IL)-4 with an IC(50) of 0.28 nM without affecting type 1 helper T (Th1) cell differentiation induced by IL-12. In addition, compound 25y showed an oral bioavailability of 25% in mouse.


Subject(s)
Morpholines/administration & dosage , Morpholines/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , STAT6 Transcription Factor/antagonists & inhibitors , Administration, Oral , Animals , Cell Differentiation/drug effects , Cells, Cultured , Chemical Phenomena , Chemistry, Physical , Mice , Mice, Inbred C57BL , Molecular Structure , Morpholines/chemistry , Morpholines/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , STAT6 Transcription Factor/metabolism , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
6.
Bioorg Med Chem Lett ; 17(9): 2438-42, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17339109

ABSTRACT

4-Morpholin-4-ylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine 2a was discovered in our chemical library as a novel p110alpha inhibitor with an IC(50) of 1.4 microM. By structural modification of 2a, the 2-aryl-4-morpholinopyrido[3',2':4,5]furo[3,2-d]pyrimidine derivative 10e was discovered as a p110alpha inhibitor with approximately 400-fold greater potency than 2a. Evaluation of isoform selectivity showed that 10e is a potent inhibitor of p110beta. Furthermore, 10e showed anti-proliferative activity in various cell lines, including multi-drug resistant MCF7/ADR-res cells, and was effective against HeLa human cervical tumor xenografts in nude mice.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Pyridines/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Class I Phosphatidylinositol 3-Kinases , Drug Design , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Inhibitory Concentration 50 , Mice , Molecular Conformation , Neoplasm Transplantation
7.
Bioorg Med Chem ; 14(20): 6847-58, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-16837202

ABSTRACT

A series of 4-morpholino-2-phenylquinazolines and related derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. In this series, the thieno[3,2-d]pyrimidine derivative 15e showed the strongest inhibitory activity against p110alpha, with an IC(50) value of 2.0 nM, and inhibited proliferation of A375 melanoma cells with an IC(50) value of 0.58 microM. Moreover, 15e was found to be selective for p110alpha over other PI3K isoforms and protein kinases, making it the first example of a selective PI3K p110alpha inhibitor.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Morpholines/chemical synthesis , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Animals , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , Chromones/pharmacology , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Morpholines/chemistry , Quinazolines/chemistry , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL