Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 164(3): 550-63, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26824661

ABSTRACT

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Glioma/pathology , Transcriptome , Adult , Brain Neoplasms/metabolism , Cell Proliferation , Cluster Analysis , DNA Helicases/genetics , DNA Methylation , Epigenesis, Genetic , Glioma/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Middle Aged , Mutation , Nuclear Proteins/genetics , Promoter Regions, Genetic , Signal Transduction , Telomerase/genetics , Telomere , X-linked Nuclear Protein
2.
N Engl J Med ; 372(26): 2481-98, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26061751

ABSTRACT

BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).


Subject(s)
DNA, Neoplasm/analysis , Genes, p53 , Glioma/genetics , Mutation , Adolescent , Adult , Aged , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , Cluster Analysis , Female , Glioblastoma/genetics , Glioma/metabolism , Glioma/mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Proportional Hazards Models , Sequence Analysis, DNA , Signal Transduction
3.
Nucleic Acids Res ; 43(Database issue): D812-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25392408

ABSTRACT

The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a web-based application that integrates relevant data, analysis and visualization, allowing users to easily discover and share their research observations. Users can explore the relationship between genomic alterations and phenotypes by visualizing various -omic data alongside clinical and phenotypic features, such as age, subtype classifications and genomic biomarkers. The Cancer Genomics Browser currently hosts 575 public datasets from genome-wide analyses of over 227,000 samples, including datasets from TCGA, CCLE, Connectivity Map and TARGET. Users can download and upload clinical data, generate Kaplan-Meier plots dynamically, export data directly to Galaxy for analysis, plus generate URL bookmarks of specific views of the data to share with others.


Subject(s)
Databases, Genetic , Neoplasms/genetics , Cell Line, Tumor , Child , Genomics , Humans , Internet , Kaplan-Meier Estimate , Neoplasms/diagnosis , Neoplasms/mortality , Phenotype
4.
Hum Mol Genet ; 21(11): 2572-87, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22378147

ABSTRACT

Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila and mouse models, we show that the proteins encoded by SMARCAL1 orthologs localize to transcriptionally active chromatin and modulate gene expression. We also show that, as found in SIOD patients, deficiency of the SMARCAL1 orthologs alone is insufficient to cause disease in fruit flies and mice, although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.


Subject(s)
Alleles , Arteriosclerosis/genetics , DNA Helicases/genetics , Gene Expression , Immunologic Deficiency Syndromes/genetics , Mutation , Nephrotic Syndrome/genetics , Osteochondrodysplasias/genetics , Pulmonary Embolism/genetics , Animals , Arteriosclerosis/metabolism , Chromatin/metabolism , DNA Helicases/metabolism , Disease Models, Animal , Drosophila/enzymology , Embryo, Nonmammalian/metabolism , Environment , Humans , Immunologic Deficiency Syndromes/metabolism , Mice , Nephrotic Syndrome/metabolism , Osteochondrodysplasias/metabolism , Penetrance , Primary Immunodeficiency Diseases , Pulmonary Embolism/metabolism
5.
Ann Neurol ; 71(6): 845-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22718548

ABSTRACT

Oligodendroglioma is characterized by mutations of IDH and CIC, 1p/19q loss, and slow growth. We found that NHE-1 on 1p is silenced in oligodendrogliomas secondary to IDH-associated hypermethylation and 1p allelic loss. Silencing lowers intracellular pH and attenuates acid load recovery in oligodendroglioma cells. Others have shown that rapid tumor growth cannot occur without NHE-1-mediated neutralization of the acidosis generated by the Warburg glycolytic shift. Our findings show for the first time that the pH regulator NHE-1 can be silenced in a human cancer and also suggest that pH deregulation may contribute to the distinctive biology of human oligodendroglioma.


Subject(s)
Brain Neoplasms/genetics , Chromosome Deletion , Chromosomes, Human, Pair 1/genetics , DNA Methylation , Mutation/genetics , Oligodendroglioma/genetics , Sodium-Hydrogen Exchangers/genetics , Brain Neoplasms/pathology , Humans , Oligodendroglioma/pathology , Protons , Tumor Cells, Cultured
6.
J Pathol ; 226(1): 7-16, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072542

ABSTRACT

Oligodendroglioma is characterized by unique clinical, pathological, and genetic features. Recurrent losses of chromosomes 1p and 19q are strongly associated with this brain cancer but knowledge of the identity and function of the genes affected by these alterations is limited. We performed exome sequencing on a discovery set of 16 oligodendrogliomas with 1p/19q co-deletion to identify new molecular features at base-pair resolution. As anticipated, there was a high rate of IDH mutations: all cases had mutations in either IDH1 (14/16) or IDH2 (2/16). In addition, we discovered somatic mutations and insertions/deletions in the CIC gene on chromosome 19q13.2 in 13/16 tumours. These discovery set mutations were validated by deep sequencing of 13 additional tumours, which revealed seven others with CIC mutations, thus bringing the overall mutation rate in oligodendrogliomas in this study to 20/29 (69%). In contrast, deep sequencing of astrocytomas and oligoastrocytomas without 1p/19q loss revealed that CIC alterations were otherwise rare (1/60; 2%). Of the 21 non-synonymous somatic mutations in 20 CIC-mutant oligodendrogliomas, nine were in exon 5 within an annotated DNA-interacting domain and three were in exon 20 within an annotated protein-interacting domain. The remaining nine were found in other exons and frequently included truncations. CIC mutations were highly associated with oligodendroglioma histology, 1p/19q co-deletion, and IDH1/2 mutation (p < 0.001). Although we observed no differences in the clinical outcomes of CIC mutant versus wild-type tumours, in a background of 1p/19q co-deletion, hemizygous CIC mutations are likely important. We hypothesize that the mutant CIC on the single retained 19q allele is linked to the pathogenesis of oligodendrogliomas with IDH mutation. Our detailed study of genetic aberrations in oligodendroglioma suggests a functional interaction between CIC mutation, IDH1/2 mutation, and 1p/19q co-deletion.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Isocitrate Dehydrogenase/genetics , Oligodendroglioma/genetics , Repressor Proteins/genetics , Biomarkers, Tumor/analysis , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 19/genetics , Disease-Free Survival , Humans , Kaplan-Meier Estimate , Mutation , Neoplasm Grading , Oligodendroglioma/mortality , Oligodendroglioma/pathology
7.
Annu Rev Genomics Hum Genet ; 10: 135-51, 2009.
Article in English | MEDLINE | ID: mdl-19715439

ABSTRACT

Transcriptome analysis has been a key area of biological inquiry for decades. Over the years, research in the field has progressed from candidate gene-based detection of RNAs using Northern blotting to high-throughput expression profiling driven by the advent of microarrays. Next-generation sequencing technologies have revolutionized transcriptomics by providing opportunities for multidimensional examinations of cellular transcriptomes in which high-throughput expression data are obtained at a single-base resolution.


Subject(s)
Gene Expression Profiling/methods , Sequence Analysis, DNA/methods , Animals , DNA/analysis , Gene Expression Profiling/instrumentation , Genome , Humans , Polymorphism, Single Nucleotide , RNA, Untranslated/analysis , Sequence Analysis, DNA/instrumentation
8.
Stem Cells ; 28(11): 2027-40, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20848654

ABSTRACT

Skin-derived precursors (SKPs) are multipotent dermal stem cells that reside within a hair follicle niche and that share properties with embryonic neural crest precursors. Here, we have asked whether SKPs and their endogenous dermal precursors originate from the neural crest or whether, like the dermis itself, they originate from multiple developmental origins. To do this, we used two different mouse Cre lines that allow us to perform lineage tracing: Wnt1-cre, which targets cells deriving from the neural crest, and Myf5-cre, which targets cells of a somite origin. By crossing these Cre lines to reporter mice, we show that the endogenous follicle-associated dermal precursors in the face derive from the neural crest, and those in the dorsal trunk derive from the somites, as do the SKPs they generate. Despite these different developmental origins, SKPs from these two locations are functionally similar, even with regard to their ability to differentiate into Schwann cells, a cell type only thought to be generated from the neural crest. Analysis of global gene expression using microarrays confirmed that facial and dorsal SKPs exhibit a very high degree of similarity, and that they are also very similar to SKPs derived from ventral dermis, which has a lateral plate origin. However, these developmentally distinct SKPs also retain differential expression of a small number of genes that reflect their developmental origins. Thus, an adult neural crest-like dermal precursor can be generated from a non-neural crest origin, a finding with broad implications for the many neuroendocrine cells in the body.


Subject(s)
Neural Crest/cytology , Skin/cytology , Stem Cells/cytology , Animals , Computational Biology , Hair Follicle/cytology , Immunohistochemistry , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/metabolism , Tissue Culture Techniques
9.
Physiol Genomics ; 40(3): 150-7, 2010 Feb 04.
Article in English | MEDLINE | ID: mdl-19952280

ABSTRACT

Valve formation during embryonic heart development involves a complex interplay of regional specification, cell transformations, and remodeling events. While many studies have addressed the role of specific genes during this process, a global understanding of the genetic basis for the regional specification and development of the heart valves is incomplete. We have undertaken genome-wide transcriptional profiling of the developing heart valves in the mouse. Four Serial Analysis of Gene Expression libraries were generated and analyzed from the mouse atrio-ventricular canal (AVC) at embryonic days 9.5-12.5, covering the stages from initiation of endothelial to mesenchymal transition (EMT) through to the beginning of endocardial cushion remodeling. We identified 14 distinct temporal patterns of gene expression during AVC development. These were associated with specific functions and signaling pathway members. We defined the temporal distribution of mesenchyme genes during the EMT process and of specific Notch and transforming growth factor-beta targets. This work provides the first comprehensive temporal dataset during the formation of heart valves. These results identify molecular signatures that distinguish different phases of early heart valve formation allowing gene expression and function to be further investigated.


Subject(s)
Gene Expression Regulation, Developmental , Genome , Genomics , Heart Valves/embryology , Animals , Cell Differentiation , Embryo, Mammalian/metabolism , Endothelium/metabolism , Heart Valves/metabolism , Mesoderm/cytology , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Receptors, Notch/genetics , Receptors, Notch/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
10.
Genomics ; 92(5): 255-64, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18703132

ABSTRACT

A new generation of sequencing technologies, from Illumina/Solexa, ABI/SOLiD, 454/Roche, and Helicos, has provided unprecedented opportunities for high-throughput functional genomic research. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted resequencing, discovery of transcription factor binding sites, and noncoding RNA expression profiling. This review discusses applications of next-generation sequencing technologies in functional genomics research and highlights the transforming potential these technologies offer.


Subject(s)
Biotechnology/methods , Computational Biology/methods , Gene Expression Profiling , Genomics , Sequence Analysis, DNA/methods , Genome, Human , Humans , Sequence Analysis, DNA/instrumentation
11.
Article in English | MEDLINE | ID: mdl-31372595

ABSTRACT

Clinical detection of sequence and structural variants in known cancer genes points to viable treatment options for a minority of children with cancer.1 To increase the number of children who benefit from genomic profiling, gene expression information must be considered alongside mutations.2,3 Although high expression has been used to nominate drug targets for pediatric cancers,4,5 its utility has not been evaluated in a systematic way.6 We describe a child with a rare sarcoma that was profiled with whole-genome and RNA sequencing (RNA-Seq) techniques. Although the tumor did not harbor DNA mutations targetable by available therapies, incorporation of gene expression information derived from RNA-Seq analysis led to a therapy that produced a significant clinical response. We use this case to describe a framework for inclusion of gene expression into the clinical genomic evaluation of pediatric tumors.

12.
Cell Rep ; 23(2): 637-651, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642018

ABSTRACT

Glioma diagnosis is based on histomorphology and grading; however, such classification does not have predictive clinical outcome after glioblastomas have developed. To date, no bona fide biomarkers that significantly translate into a survival benefit to glioblastoma patients have been identified. We previously reported that the IDH mutant G-CIMP-high subtype would be a predecessor to the G-CIMP-low subtype. Here, we performed a comprehensive DNA methylation longitudinal analysis of diffuse gliomas from 77 patients (200 tumors) to enlighten the epigenome-based malignant transformation of initially lower-grade gliomas. Intra-subtype heterogeneity among G-CIMP-high primary tumors allowed us to identify predictive biomarkers for assessing the risk of malignant recurrence at early stages of disease. G-CIMP-low recurrence appeared in 9.5% of all gliomas, and these resembled IDH-wild-type primary glioblastoma. G-CIMP-low recurrence can be characterized by distinct epigenetic changes at candidate functional tissue enhancers with AP-1/SOX binding elements, mesenchymal stem cell-like epigenomic phenotype, and genomic instability. Molecular abnormalities of longitudinal G-CIMP offer possibilities to defy glioblastoma progression.


Subject(s)
Brain Neoplasms/pathology , DNA Methylation , Glioma/pathology , Neoplasm Recurrence, Local/genetics , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/therapy , CpG Islands , Female , Genomic Instability , Glioma/genetics , Glioma/mortality , Glioma/therapy , Humans , Isocitrate Dehydrogenase/genetics , Kaplan-Meier Estimate , Longitudinal Studies , Male , Middle Aged , Mutation , Neoplasm Grading , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Phenotype , Prognosis
13.
Cancer Res ; 77(21): e111-e114, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29092953

ABSTRACT

Vast amounts of molecular data are being collected on tumor samples, which provide unique opportunities for discovering trends within and between cancer subtypes. Such cross-cancer analyses require computational methods that enable intuitive and interactive browsing of thousands of samples based on their molecular similarity. We created a portal called TumorMap to assist in exploration and statistical interrogation of high-dimensional complex "omics" data in an interactive and easily interpretable way. In the TumorMap, samples are arranged on a hexagonal grid based on their similarity to one another in the original genomic space and are rendered with Google's Map technology. While the important feature of this public portal is the ability for the users to build maps from their own data, we pre-built genomic maps from several previously published projects. We demonstrate the utility of this portal by presenting results obtained from The Cancer Genome Atlas project data. Cancer Res; 77(21); e111-4. ©2017 AACR.


Subject(s)
Computational Biology/methods , Genomics/methods , Neoplasms/genetics , Software , Chromosome Mapping/methods , Gene Regulatory Networks/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , Humans , Mutation , Neoplasms/pathology , Reproducibility of Results , User-Computer Interface
14.
Cancer Cell ; 29(5): 723-736, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27165744

ABSTRACT

We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , Genome, Human/genetics , Genomics/methods , Adolescent , Adrenal Cortex Neoplasms/pathology , Adrenal Cortex Neoplasms/therapy , Adrenocortical Carcinoma/pathology , Adrenocortical Carcinoma/therapy , Adult , Aged , Aged, 80 and over , Child , DNA Methylation , Disease-Free Survival , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Mutation , Outcome Assessment, Health Care , Prognosis , Young Adult
15.
Nat Genet ; 46(5): 457-461, 2014 May.
Article in English | MEDLINE | ID: mdl-24705252

ABSTRACT

Diffuse intrinsic pontine gliomas (DIPGs) are highly infiltrative malignant glial neoplasms of the ventral pons that, due to their location within the brain, are unsuitable for surgical resection and consequently have a universally dismal clinical outcome. The median survival time is 9-12 months, with neither chemotherapeutic nor targeted agents showing substantial survival benefit in clinical trials in children with these tumors. We report the identification of recurrent activating mutations in the ACVR1 gene, which encodes a type I activin receptor serine/threonine kinase, in 21% of DIPG samples. Strikingly, these somatic mutations (encoding p.Arg206His, p.Arg258Gly, p.Gly328Glu, p.Gly328Val, p.Gly328Trp and p.Gly356Asp substitutions) have not been reported previously in cancer but are identical to mutations found in the germ line of individuals with the congenital childhood developmental disorder fibrodysplasia ossificans progressiva (FOP) and have been shown to constitutively activate the BMP-TGF-ß signaling pathway. These mutations represent new targets for therapeutic intervention in this otherwise incurable disease.


Subject(s)
Activin Receptors, Type I/genetics , Brain Stem Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Glioma/genetics , Mutation, Missense/genetics , Base Sequence , Brain Stem Neoplasms/classification , Child , Cohort Studies , Exome/genetics , Glioma/classification , Humans , Molecular Sequence Data , Myositis Ossificans/genetics , Sequence Analysis, DNA , Signal Transduction/genetics
16.
Curr Drug Discov Technol ; 10(4): 283-304, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23701117

ABSTRACT

Mass spectrometry-based technologies are increasingly utilized in drug discovery. Phosphoproteomics in particular has allowed for the efficient surveying of phosphotyrosine signaling pathways involved in various diseases states, most prominently in cancer. We describe a phosphotyrosine-based proteomics screening approach to identify signaling pathways and tyrosine kinase inhibitor targets in highly tumorigenic human lymphoma-like primary cells. We identified several receptor tyrosine kinase pathways and validated SRC family kinases (SFKs) as potential drug targets for targeted selection of small molecule inhibitors. BMS-354825 (dasatinib) and SKI-606 (bosutinib), second and third generation clinical SFK/ABL inhibitors, were found to be potent cytotoxic agents against tumorigenic cells with low toxicity to normal pediatric stem cells. Both SFK inhibitors reduced ERK1/2 and AKT phosphorylation and induced apoptosis. This study supports the adaptation of high-end mass spectrometry techniques for the efficient identification of candidate tyrosine kinases as novel therapeutic targets in primary cancer cell lines.


Subject(s)
Aniline Compounds/pharmacology , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Thiazoles/pharmacology , src-Family Kinases/genetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dasatinib , Gene Expression Profiling , Humans , Lymphoma , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Proteomics , Proto-Oncogene Proteins c-akt/metabolism
17.
Dis Model Mech ; 6(2): 373-82, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23104988

ABSTRACT

Neuroblastoma is a childhood extracranial solid tumour that is associated with a number of genetic changes. Included in these genetic alterations are mutations in the kinase domain of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK), which have been found in both somatic and familial neuroblastoma. In order to treat patients accordingly requires characterisation of these mutations in terms of their response to ALK tyrosine kinase inhibitors (TKIs). Here, we report the identification and characterisation of two novel neuroblastoma ALK mutations (A1099T and R1464STOP), which we have investigated together with several previously reported but uncharacterised ALK mutations (T1087I, D1091N, T1151M, M1166R, F1174I and A1234T). In order to understand the potential role of these ALK mutations in neuroblastoma progression, we have employed cell culture-based systems together with the model organism Drosophila as a readout for ligand-independent activity. Mutation of ALK at position 1174 (F1174I) generates a gain-of-function receptor capable of activating intracellular targets such as ERK (extracellular signal regulated kinase) and STAT3 (signal transducer and activator of transcription 3) in a ligand-independent manner. Analysis of these previously uncharacterised ALK mutants and comparison with ALK(F1174) mutants suggests that ALK mutations observed in neuroblastoma fall into three classes. These classes are: (i) gain-of-function ligand-independent mutations such as ALK(F1174l), (ii) kinase-dead ALK mutants, e.g. ALK(I1250T) (Schönherr et al., 2011a) and (iii) ALK mutations that are ligand-dependent in nature. Irrespective of the nature of the observed ALK mutants, in every case the activity of the mutant ALK receptors could be abrogated by the ALK inhibitor crizotinib (Xalkori/PF-02341066), albeit with differing levels of sensitivity.


Subject(s)
Drosophila melanogaster/enzymology , Mutation/genetics , Neuroblastoma/enzymology , Neuroblastoma/genetics , Receptor Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase , Animals , Cell Culture Techniques , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/pathology , Crizotinib , Disease Models, Animal , Humans , Inhibitory Concentration 50 , Mutant Proteins/metabolism , Neurites/drug effects , Neurites/metabolism , Neurites/pathology , Neuroblastoma/drug therapy , Neuroblastoma/pathology , PC12 Cells , Phenotype , Phosphorylation/drug effects , Protein Structure, Tertiary , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Rats , Receptor Protein-Tyrosine Kinases/chemistry
18.
J Natl Cancer Inst ; 105(8): 551-62, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23418195

ABSTRACT

BACKGROUND: Brain metastases are most common in adults with lung cancer, predicting uniformly poor patient outcome, with a median survival of only months. Despite their frequency and severity, very little is known about tumorigenesis in brain metastases. METHODS: We applied previously developed primary solid tumor-initiating cell models to the study of brain metastases from the lung to evaluate the presence of a cancer stem cell population. Patient-derived brain metastases (n = 20) and the NCI-H1915 cell line were cultured as stem-enriching tumorspheres. We used in vitro limiting-dilution and sphere-forming assays, as well as intracranial human-mouse xenograft models. To determine genes overexpressed in brain metastasis tumorspheres, we performed comparative transcriptome analysis. All statistical analyses were two-sided. RESULTS: Patient-derived brain metastasis tumorspheres had a mean sphere-forming capacity of 33 spheres/2000 cells (SD = 33.40) and median stem-cell frequency of 1/60 (range = 0-1/141), comparable to that of primary brain tumorspheres (P = .53 and P = .20, respectively). Brain metastases also expressed CD15 and CD133, markers suggestive of a stemlike population. Through intracranial xenotransplantation, brain metastasis tumorspheres were found to recapitulate the original patient tumor heterogeneity. We also identified several genes overexpressed in brain metastasis tumorspheres as statistically significant predictors of poor survival in primary lung cancer. CONCLUSIONS: For the first time, we demonstrate the presence of a stemlike population in brain metastases from the lung. We also show that NCI-H1915 tumorspheres could be useful in studying self-renewal and tumor initiation in brain metastases. Our candidate genes may be essential to metastatic stem cell populations, where pathway interference may be able to transform a uniformly fatal disease into a more localized and treatable one.


Subject(s)
Brain Neoplasms/mortality , Brain Neoplasms/secondary , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Neoplastic Stem Cells , Transcriptome , Adult , Animals , Cell Line, Tumor , Female , Flow Cytometry , Humans , Male , Mice , RNA, Neoplasm/analysis , Sequence Analysis, RNA , Survival Analysis , Transplantation, Heterologous
19.
Nat Genet ; 45(3): 279-84, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23334666

ABSTRACT

Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 affected individuals (cases) using a combination of whole-exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per Mb (0.48 nonsilent) and notably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, and an additional 7.1% had focal deletions), MYCN (1.7%, causing a recurrent p.Pro44Leu alteration) and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1 and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies that rely on frequently altered oncogenic drivers.


Subject(s)
Exome , Mutation , Neuroblastoma , Cell Line, Tumor , Genetic Predisposition to Disease , Genome, Human , Humans , Neuroblastoma/genetics , Neuroblastoma/physiopathology , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Transcriptome
20.
Exp Hematol ; 39(8): 866-79.e1, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21689726

ABSTRACT

OBJECTIVE: The molecular mechanisms that maintain human pluripotent stem (PS) cells are not completely understood. Here we sought to identify new candidate PS cell regulators to facilitate future improvements in their generation, expansion, and differentiation. MATERIALS AND METHODS: We used bioinformatic analyses of multiple serial-analysis-of-gene-expression libraries (generated from human PS cells and their differentiated derivatives), together with small interfering RNA (siRNA) screening to identify candidate pluripotency regulators. Validation of candidate regulators involved promoter analyses, Affymetrix profiling, real-time PCR, and immunoprecipitation. RESULTS: Promoter analysis of genes differentially expressed across multiple serial-analysis-of-gene-expression libraries identified E2F motifs in the promoters of many PS cell-specific genes (e.g., POU5F1, NANOG, SOX2, FOXD3). siRNA analyses identified two retinoblastoma binding proteins (RBBP4, RBBP9) as required for maintenance of multiple human PS cell types. Both RBBPs were bound to RB in human PS cells, and E2F motifs were present in the promoters of genes whose expression was altered by decreasing RBBP4 and RBBP9 expression. Affymetrix and real-time PCR studies of siRNA-treated human PS cells showed that reduced RBBP4 or RBBP9 expression concomitantly decreased expression of POU5F1, NANOG, SOX2, and/or FOXD3 plus certain cell cycle genes (e.g., CCNA2, CCNB1), while increasing expression of genes involved in organogenesis (particularly neurogenesis). CONCLUSIONS: These results reveal new candidate positive regulators of human PS cells, providing evidence of their ability to regulate expression of pluripotency, cell cycle, and differentiation genes in human PS cells. These data provide valuable new leads for further elucidating mechanisms of human pluripotency.


Subject(s)
Cell Cycle Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Neoplasm Proteins/genetics , Pluripotent Stem Cells/metabolism , Retinoblastoma-Binding Protein 4/genetics , Blotting, Western , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Cells, Cultured , Gene Expression Profiling , Gene Library , Humans , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Protein Binding , RNA Interference , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma-Binding Protein 4/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL