Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Appl Opt ; 61(14): 4215-4225, 2022 May 10.
Article in English | MEDLINE | ID: mdl-36256099

ABSTRACT

During 2019, an infrared camera, the compact thermal imager (CTI), recorded 15 million images of the Earth from the International Space Station. CTI is based on strained-layer superlattice (SLS) detector technology. The camera covered the spectral range from 3 to 11 µm in two spectral channels, 3.3-5.4 and 7.8-10.7 µm. Individual image frames were 26×21km2 projected on the ground, with 82 m pixel resolution. A frame time of 2.54 s created continuous image swaths with a 13% along-track image overlap. Upper limits determined on the ground and in flight for the electronic offset, read noise, and dark current demonstrated the stability of the SLS detector and camera over many months. Temperature calibration was established using a combination of preflight and in-flight measurements. A narrowband approximation of temperature as a function of photon counts produced an analytic relationship covering a temperature range of 0°-400°C. Examples of CTI images illustrate temperature retrievals over sea ice, urban and agricultural areas, desert, and wildfires.

2.
Proc Natl Acad Sci U S A ; 105(51): 20350-5, 2008 Dec 23.
Article in English | MEDLINE | ID: mdl-19075224

ABSTRACT

Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire emissions from Indonesia, Malaysia, and Papua New Guinea during 2000-2006. We found that average fire emissions from this region [128 +/- 51 (1sigma) Tg carbon (C) year(-1), T = 10(12)] were comparable to fossil fuel emissions. In Borneo, carbon emissions from fires were highly variable, fluxes during the moderate 2006 El Niño more than 30 times greater than those during the 2000 La Niña (and with a 2000-2006 mean of 74 +/- 33 Tg C yr(-1)). Higher rates of forest loss and larger areas of peatland becoming vulnerable to fire in drought years caused a strong nonlinear relation between drought and fire emissions in southern Borneo. Fire emissions from Sumatra showed a positive linear trend, increasing at a rate of 8 Tg C year(-2) (approximately doubling during 2000-2006). These results highlight the importance of including deforestation in future climate agreements. They also imply that land manager responses to expected shifts in tropical precipitation may critically determine the strength of climate-carbon cycle feedbacks during the 21st century.


Subject(s)
Climate , Conservation of Natural Resources , Fires , Asia , Carbon Monoxide/analysis , Droughts , Ecosystem , Satellite Communications , Sphagnopsida
3.
Science ; 158(3806): 1273-9, 1967 Dec 08.
Article in English | MEDLINE | ID: mdl-17801850

ABSTRACT

According to theories of model stellar atmospheres only stars of spectral types from O to about B3 may be expected to be bright in the ultraviolet-wavelength region. Observations of the strong resonance lines between 911.6 and 1900 A will yield new information permitting construction of better models for the outermost layers of OB stars. However, an adequate theory of line-formation, including non-l.t.e. effects, should be used if an accurate physical representation is to result. Already it has been demonstrated beyond doubt that O and B0 supergiants are surrounded by expanding atmospheres.

4.
Science ; 293(5532): 1112-6, 2001 Aug 10.
Article in English | MEDLINE | ID: mdl-11498584

ABSTRACT

The neutral hydrogen (H I) and ionized helium (He II) absorption in the spectra of quasars are unique probes of structure in the early universe. We present Far-Ultraviolet Spectroscopic Explorer observations of the line of sight to the quasar HE2347-4342 in the 1000 to 1187 angstrom band at a resolving power of 15,000. We resolve the He II Lyman alpha (Lyalpha) absorption as a discrete forest of absorption lines in the redshift range 2.3 to 2.7. About 50 percent of these features have H I counterparts with column densities N(H I) > 10(12.3) per square centimeter that account for most of the observed opacity in He II Lyalpha. The He II to H I column density ratio ranges from 1 to >1000, with an average of approximately 80. Ratios of <100 are consistent with photoionization of the absorbing gas by a hard ionizing spectrum resulting from the integrated light of quasars, but ratios of >100 in many locations indicate additional contributions from starburst galaxies or heavily filtered quasar radiation. The presence of He II Lyalpha absorbers with no H I counterparts indicates that structure is present even in low-density regions, consistent with theoretical predictions of structure formation through gravitational instability.

5.
Science ; 356(6345): 1356-1362, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28663495

ABSTRACT

Fire is an essential Earth system process that alters ecosystem and atmospheric composition. Here we assessed long-term fire trends using multiple satellite data sets. We found that global burned area declined by 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area remained robust after adjusting for precipitation variability and was largest in savannas. Agricultural expansion and intensification were primary drivers of declining fire activity. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. Fire models were unable to reproduce the pattern and magnitude of observed declines, suggesting that they may overestimate fire emissions in future projections. Using economic and demographic variables, we developed a conceptual model for predicting fire in human-dominated landscapes.


Subject(s)
Climate , Ecosystem , Fires , Satellite Imagery , Agriculture , Carbon Sequestration , Conservation of Natural Resources , Human Activities , Models, Theoretical
6.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120163, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23610169

ABSTRACT

Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.


Subject(s)
Conservation of Natural Resources/methods , Fires/statistics & numerical data , Trees , Brazil , Carbon/analysis , Climate , Human Activities , Humans , Risk Factors , Seasons , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL